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Abstract

Detection of anomalies in data is one of the fundamental machine learn-
ing tasks. Anomaly detection provides the core technology for a broad spectrum
of security-centric applications. In this dissertation, we examine various aspects of
anomaly based intrusion detection in computer security.

First, we present a new approach to learn program behavior for intrusion
detection. Text categorization techniques are adopted to convert each process to
a vector and calculate the similarity between two program activities. Then the k-
Nearest Neighbor classifier is employed to classify program behavior as normal or
intrusive. We demonstrate that our approach is able to effectively detect intrusive
program behavior while a low false positive rate is achieved.

Second, we describe an adaptive anomaly detection framework that is de-
signed to handle concept drift and online learning for dynamic, changing environ-
ments. Through the use of unsupervised evolving connectionist systems, normal
behavior changes are efficiently accommodated while anomalous activities can still
be recognized. We demonstrate the performance of our adaptive anomaly detection
systems and show that the false positive rate can be significantly reduced.

Third, we study methods to efficiently estimate the generalization perfor-
mance of an anomaly detector and the training size requirements. An error bound
for support vector machine based anomaly detection is introduced. Inverse power-
law learning curves, in turn, are used to estimate how the accuracy of the anomaly

detector improves when trained with additional samples.
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Finally, we present a game theoretic methodology for cost-benefit analysis
and design of IDS. We use a simple two-person, nonzero-sum game to model the
strategic interdependence between an IDS and an attacker. The solutions based
on the game theoretic analysis integrate the cost-effectiveness and technical per-

formance tradeoff of the IDS and identify the best defense and attack strategies.
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Dissertation Committee Chair
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Abstract

Detection of anomalies in data is one of the fundamental machine learning tasks.
Anomaly detection provides the core technology for a broad spectrum of security-centric
applications. In this dissertation, we examine various aspects of anomaly based intrusion
detection in computer security.

First, we present a new approach to learn program behavior for intrusion detection.
Text categorization techniques are adopted to convert each process to a vector and calculate
the similarity between two program activities. Then the k-Nearest Neighbor classifier is
employed to classify program behavior as normal or intrusive. We demonstrate that our
approach is able to effectively detect intrusive program behavior while a low false positive
rate is achieved.

Second, we describe an adaptive anomaly detection framework that is designed to
handle concept drift and online learning for dynamic, changing environments. Through the
use of unsupervised evolving connectionist systems, normal behavior changes are efficiently
accommodated while anomalous activities can still be recognized. We demonstrate the
performance of our adaptive anomaly detection systems and show that the false positive
rate can be significantly reduced.

Third, we study methods to efficiently estimate the generalization performance of
an anomaly detector and the training size requirements. An error bound for support vector
machine based anomaly detection is introduced. Inverse power-law learning curves, in turn,
are used to estimate how the accuracy of the anomaly detector improves when trained with
additional samples.

Finally, we present a game theoretic methodology for cost-benefit analysis and de-
sign of IDS. We use a simple two-person, nonzero-sum game to model the strategic interde-
pendence between an IDS and an attacker. The solutions based on the game theoretic analy-

sis integrate the cost-effectiveness and technical performance tradeoff of the IDS and identify



the best defense and attack strategies.
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Chapter 1

Introduction

Computer security vulnerabilities will always exist as long as we have flawed secu-
rity policies, poorly configured computer systems, or imperfect software programs. Given
the rapid increase in connectivity and accessibility of computer systems in today’s society,
computer intrusions and security breaches are posing serious threats to national security as
well as enterprise and home user interests.

Intrusion detection is an important component of computer security mechanisms.
It aims to detect computer break-ins, penetrations, and other forms of computer abuse that
exploit security vulnerabilities or flaws in computer systems. Examples of these include
hackers using exploit scripts to gain access to or deny the services of a computer system
and insiders who misuse their privileges. An intrusion detection system (IDS) continuously
monitors the standard operations of the target system and looks for known attack signatures
and/or deviations in usage. Traditional security mechanisms, such as authentication, access
control and information flow control, help protect systems, data, and resources. However,
nothing is perfect. Even the best protected systems must be monitored to detect successful
and unsuccessful attempts to breach security. This is why intrusion detection systems have

become an increasingly indispensable player in the arsenal against computer misuse.



1.1 General Approaches to Intrusion Detection

IDS began in the 1980s as a promising paradigm for detecting and preventing

intrusions and attacks [18]. The goals of an IDS can be summarized as follows:

e Detect a wide variety of intrusions, including intrusions from outside as well as insider

attacks, both known and previously unknown attacks.
e Detect intrusions in a timely fashion.
e Present the analysis in a simple, easy-to-understand format.

e Be accurate, that is, achieve a low false alarm rate. A false positive occurs when an
IDS raises an alarm when no attack is underway and a false negative occurs when an

IDS fails to report an ongoing attack.

For the last two decades, three general approaches to intrusion detection have been
developed, namely, anomaly detection, misuse detection and specification-based detection
8]

An anomaly detector analyzes a set of characteristics of the monitored system (or
users) and identifies activities that deviate from the normal behavior, based on the assump-
tion that such deviations may indicate that an intrusion or attack exploiting vulnerabilities
has occurred (or may still be occurring). Any observable behavior of the system can be used
to build a model of the normal operation of the system. Audit logs, network traffic, user
commands, system calls are all common choices. Machine learning and statistical methods
are usually employed to capture the system or user’s normal usage pattern and classify new
behavior as either normal or abnormal. Anomaly detection has the potential of detecting
novel attacks, as well as variations of known attacks. However, anomaly detection suffers
from the basic difficulty of defining what is “normal”. When the system or user behavior
varies widely, methods based on anomaly detection tend to produce many false alarms be-
cause they are not capable of discriminating between abnormal patterns triggered by an
otherwise legitimate usage and those triggered by an intrusion. Some well-known anomaly

detectors include NIDES [44], Wisdom & Sense [102], and EMERALD [92].
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Figure 1.1: Three general approaches to intrusion detection.

In misuse detection, a user’s activities are compared with the known signature
patterns of attackers. Those matched are then labeled as intrusive activities. Most of today’s
commercial IDSes are misuse detection based. While misuse detection can be effective in
recognizing known intrusion types, it can not detect novel attacks. Research efforts on
misuse detection systems include Bro [91] and NSTAT [49].

Specification-based detection [52] [101], in contrast, determines whether or not
a sequence of instructions violates a specification of how a program, or system, should
execute. If so, it reports a possible intrusion. Although specification-based detection has
the potential for providing a very low false positive rate while detecting a wide range of
attacks, it is difficult to model complex programs or systems and write security specifications
for them. Figure 1.1 illustrates the difference of the three general approaches to intrusion
detection in terms of their computation and memory requirements and capability to detect
novel, unseen attacks. In practice, these general approaches are often combined to detect
attacks more efficiently.

A detailed survey of intrusion detection research can be seen elsewhere [72] [5]

[83]. While a great deal of research has been done in intrusion detection, much of it has



been based on a combination of intuition and ad hoc techniques. Current IDSes are still
plagued by excessive false alarms and poor attack detection accuracy (especially against

novel attacks and insider threat).

1.2 Machine Learning Based Anomaly Detection

In this dissertation, we examine various aspects of machine learning based anomaly
detection in computer security. Indeed, detection of anomalies in data is one of the funda-
mental machine learning tasks. Anomaly detection (also known as novelty detection, outlier
detection, change detection or activity monitoring) provides the core technology for a broad
spectrum of security-centric applications including fraud detection (credit cards, cell phones,
etc.), crisis (e.g., epidemic or bio-terrorism) monitoring, news story monitoring, hardware
fault detection, and network performance monitoring [28][77]. Although these applications
may differ greatly in representation, they share significant characteristics that differentiate
them from other machine learning tasks.

The goal of anomaly detection is to identify anomalous activities (i.e., rare, un-
usual events) in a data stream accurately and in a timely fashion. In applications such
as computer security, it is also desirable to be able to explain the reason for the anomaly
and propose the appropriate response actions. Due to the lack of first-principle models to
describe the complex behavior of the monitored systems, learning from the audit data is
necessary. Standard machine learning techniques such as classification, regression and time
series analysis are useful as solution components, but they do not completely address the
goal of anomaly detection, which has its own idiosyncrasies (e.g., the asymmetry of class
distributions and error costs).

Over the years, many machine learning and statistical methods have been pro-
posed for anomaly detection, including rule-based approaches [63], immunological-based
approaches [30], neural nets [17] [33], instance-based approaches [59] [67], clustering meth-
ods [24] [60], probabilistic learning methods [23] [75], multi-covariance analysis [44], and so
on. However, in real-world applications, anomaly based intrusion detection systems tend to

give less than satisfactory performance and generate excessive false alarms.



Anomaly detection is a major application of machine learning techniques in the
area of computer security. Another significant application is computer access control through
user pattern recognition using biometric features, which has achieved limited success over
the years (e.g., [4] [7]). Meanwhile, some ad hoc machine learning methods have been em-
ployed in other aspects of computer security such as virus recognition [51], misuse detection

[55] and intrusion alert aggregation [46]. In this dissertation, we focus on anomaly detection.

1.3 Issues in Anomaly Detection

In addressing the anomaly detection problem with machine learning techniques,
several difficult issues arise. These issues are common to most methods for anomaly detec-

tion.

1.3.1 Feature Selection

In anomaly detection, there are many different levels at which an IDS could mon-
itor activities on a computer system. Anomalies may be undetectable at one level of gran-
ularity or abstraction but easy to detect at a different level. For example, a worm attack
might escape detection at the level of a single host, but be detectable when the traffic of
the whole network is observed and analyzed. One of the biggest challenges in anomaly
detection is to choose features (i.e., attributes) that best characterize the user or system
usage patterns so that intrusive behavior will be perceived while non-intrusive activities will
not be classified as anomalous.

Even at a certain level of monitoring granularity, one often faces a large number of
features representing the monitored object’s behavior. For instance, a network connection
can be characterized with numerous attributes, including basic features such as source and
destination IPs, ports and protocol, and many other secondary attributes. Meanwhile,
an audit trail usually consists of sequences of categorical symbols generated from a large
discrete alphabet. A program may issue several hundred unique system calls. Similarly, a
UNIX user’s command history can contain hundreds of different commands or shell scripts.

The high dimensionality of the data or the large alphabet size gives rise to a large hypothesis



search space. This, in turn, not only increases the complexity of the problem of learning
normal behavior, but also can lead to large classification errors. Therefore, selecting relevant
features and eliminating redundant features is vital to the effectiveness of the machine

learning technique employed.

1.3.2 Skewed Class Distribution

There is a fundamental asymmetry in anomaly detection problems: normal activity
is common and intrusive activity is rare. One often faces a training set consisting of a
handful of attack examples and plenty of normal examples, or no attack example at all.
This presents a difficult challenge to machine learning methods.

A related issue is the base-rate fallacy in intrusion detection [6]. Since intrusive
activity is relatively rare, in order to achieve substantial values for the intrusion detection
rate - i.e., the Bayesian probability P(Intrusion|Alarm), we have to achieve a very low

false positive rate. This imposes a high classification accuracy requirement on IDSes.

1.3.3 Distance Metrics and Window Size

Many anomaly detection methods rely on a distance measure in the event space.
The degree of suspicion attached to an instance is directly proportional to the distance of
the instance from, for example, the nearest normal training examples or the center of the
nearest normal clusters. Common distance metrics include Euclidean distance, Manhattan
distance, Hamming distance, the vector cosine measure, and so on. A major difficulty is in
the construction of a distance measure that reflects a useful metric of similarity. A poor
choice of distance metrics may result in meaningless classifications. However, no rationale,
except empirical analysis, seems to exist in choosing distance metrics.

The same can be said for the window size for sequential data. To learn temporal
or sequential patterns of the audit data stream, a common practice is to slide a window
of certain size across the audit trace and determine whether the short sequence within the
sliding window is anomalous or not. Sequences of the same length (i.e., the window size) are
used for training and testing. A fundamental question is how to determine the appropriate

window size for anomaly detection in a systematic way instead of an ad hoc trial-and-



error fashion. Lee and Xiang [65] proposed to use several information-theoretic measures
to describe the regularity of an audit dataset and determine the “best” sliding window size
based on the conditional entropy and information cost measures. However, Tan and Maxion
[97] demonstrated that for stide, a simple instance-based detector that merely remembers
previous training sequences (no generalization capability), the appropriate window size was
influenced by the length of minimal foreign sequence in the data instead of the conditional
entropy. For a general learning method for anomaly detection, choosing the optimal window

size awaits further investigation.

1.3.4 Supervised Learning vs. Unsupervised Learning

Many proposed anomaly detection approaches involve supervised learning, where
data is manually labeled (normal or abnormal), and then provided to a learning algorithm
to build the model of the normal (and abnormal) behavior. The training set is usually
assumed noise-free. In practice, an IDS is operating continuously and new data is available
at every time instant. Thus it may be prohibitively expensive to clearly label the audit data
for training. In contrast, unsupervised learning methods work well with noisy data and do

not require class labels. They can play a significant role in intrusion detection.

1.3.5 Concept Drift

Virtually all machine learning research assumes that the training sample is drawn
from a stationary data source - the distribution of the data points and the phenomena
to be learned are not changing with time. In a practical environment, however, system
and network behaviors as well as user activities can change for bona fide reasons. For
example, the amount of traffic continues to rise. System and application programs are
updated frequently. The continually changing normal behavior, a problem known as concept
drift in machine learning literature,, presents a significant challenge in anomaly detection.
An effective anomaly detection system should be capable of adapting to normal behavior
changes while still recognizing anomalous activities. Otherwise, large amount of false alarms
would be generated if the model failed to change adaptively to accommodate the new

patterns.



1.3.6 Generalization Performance and Training Size Requirements

For a given number of training samples, how significant and reliable is the perfor-
mance (in terms of classification error) of the anomaly detector? In other words, to what
degree can the normal behavior model learned from the finite training set be applied to
yet unseen data? In addition, how much training is sufficient in order to achieve certain
performance? How will the accuracy of the anomaly detector improve when trained with

additional samples? These fundamental questions remain largely unanswered.

1.3.7 Cost-effectiveness of IDS

Most research efforts in intrusion detection have been devoted to improve the
technical effectiveness of IDS. That is, to what degree does an IDS detect and prevent
intrusions into the target system, and how good is it at reducing false positives? In practice,
however, no IDS will ever be 100% accurate in detecting attacks. False positives and false
negatives will be inevitably produced. Moreover, the reduction of one type of error (false
positive or false negative) is usually accompanied by an increase in the other type.

Cost-effectiveness is an important, yet often overlooked aspect of IDS. When an
organization makes an investment decision on a security mechanism such as IDS, risk assess-
ment and cost-benefit analysis is essential. This includes assessment of the organization’s
assets and values, identification of threats and vulnerabilities, cost-benefit trade-off evalu-
ation, and so on. The major cost factors that ought to be taken into consideration are the
operational cost of IDS, the expected loss due to intrusions and the cost of manual or auto-
matic response to an intrusion [61]. Even when the adoption of IDS technology is justifiable,
the IDS operator still faces the challenge of employing the IDS properly and determining
the best response strategies against various types of attacks in order to minimize the cost

of maintaining the IDS while protecting the system assets.

1.4 Overview of the Dissertation

This dissertation addresses some of the aforementioned issues. Chapter 2 provides

a brief introduction to the field of machine learning and a quick review of the major learning
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methods that have been studied for anomaly detection.

Chapter 3 presents our approach, based on the k-Nearest Neighbor (kNN) classifier,
that classifies program behavior as normal or intrusive. Program behavior is represented
by frequencies of system calls, instead of short system call sequences. Each system call
is treated as a word and the collection of system calls over each program execution as a
document. This analogy makes it possible to bring the full spectrum of well-developed text
processing methods to bear on the intrusion detection problem.

An adaptive anomaly detection framework is presented in Chapter 4. It is de-
signed for dynamic, changing environments and capable of online learning and concept
drift handling. Normal behavior is learned in an incremental, adaptive fashion, through
the use of unsupervised evolving connectionist systems. We demonstrate the performance
of our adaptive anomaly detection systems and show that the false positive rate can be
significantly reduced.

Chapter 5 addresses two important questions in anomaly detection: how to esti-
mate the generalization performance of an anomaly detector? And how much training is
sufficient in order to achieve certain performance? An efficient generalization performance
estimate, tailored to SVM-based anomaly detection, is introduced. In addition, inverse
power-law learning curves are constructed to estimate training size requirements.

Chapter 6 presents a game theoretic methodology for cost-effectiveness analysis of
IDS. The interactions between IDS and attackers are modeled in a game playing context
to answer questions such as when an IDS is useful and how the IDS should respond to an
alarm.

We summarize our conclusions and outline future directions in Chapter 7.
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Chapter 2

Machine Learning Approaches to

Anomaly Detection

2.1 Machine Learning and Its Problem Formulations

Learning is the process of estimating an unknown input-output dependency, i.e.,
a model (or hypothesis) of a system using a limited number of observations. In many
learning scenarios, it has become popular to use the computer to learn the correct model
based on examples of observed behavior. When computers are used to implement these
learning algorithms, the discipline is machine learning. In machine learning research, a set
of training data is used to search (or build or learn) for a model (or a hypothesis) in a space
of possible models (hypotheses). Given some training data, machine learning is equivalent
to searching the hypothesis space (or model space) for the best possible hypothesis that
describes the observed training data. Evidently, a well-defined learning problem requires a
well-formulated problem, a performance metric and a source of training experience.

Depending on how the learning task is formulated in terms of the inputs that
drive learning and the manner in which the learned knowledge is utilized, we can divide the

machine learning tasks into three broad formulations [21]:

e Learning for classification and regression. This is the most common formulation of

machine learning. Classification involves assigning a test case to one of a finite set
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of classes, whereas regression instead predicts the case’s value on some continuous
variable or attribute. There exist a variety of well-established methods for classifica-
tion and regression, including decision trees, rule induction, neural networks, support

vector machines, nearest neighbor approaches and probabilistic methods.

e Learning for acting and planning. It addresses learning of knowledge for selecting
actions or plans for an agent to carry out. One well known example is reinforcement
learning, where the agent typically carries out an action and receives some reward

that indicates the desirability of the resulting states.

e Learning for interpretation and understanding. It focuses on learning knowledge that
lets one interpret and understand situations or events. Approaches of this formulation
attempt to interpret observations in a more constructive way than simple classification,
by combining a number of separate knowledge elements to explain them, a process

often referred to as abduction.

In the context of anomaly detection, it is straightforward to cast it as a classifica-
tion problem (with two classes: normal and abnormal). Indeed most existing approaches
proposed for anomaly detection employ some learning mechanisms to capture the moni-
tored object’s normal usage patterns and classify new behavior as either normal or abnor-
mal. However, one could also formulate it as a problem of understanding and explaining
anomalous behavior. Yet another option would be the formulation that focuses on learning
for selecting appropriate responses in the presence of intrusions. Each of these three formu-
lations suggests different approaches to the anomaly detection task, and requires different

input data and prior knowledge.

2.2 Learning Methods for Anomaly Detection

In this section, we review the major learning methods that have been proposed for
intrusion detection. Although they all represent “learning for classification,” they do fall

into two broad categories:
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e A generative (also known as profiling) approach builds a model solely based on normal
training examples and evaluates each testing instance to see how well it fits the model.

Activities that deviate significantly from normal trigger an alarm.

e A discriminative approach attempts to learn the distinction between the normal and
abnormal classes. Both normal and attack examples are used in training. New activ-

ities are classified as either normal or abnormal.

A generative approach aims to define the perimeter of “normal” and thus tends to
generate more false alarms. However, it is robust over noisy training data. In contrast, a
discriminative approach may give better classification performance if clean, labeled training
data is available from both classes. Usually normal examples are common and attack
examples are rare. It is common to have a training set with skewed class distributions -
much more normal examples than attack examples.

Within each broad class of intrusion detection approaches, there exist many learn-
ing techniques that differ in the knowledge representations and their specific algorithms for
using and learning that knowledge. Common knowledge representations include rules, de-
cision trees, linear and non-linear functions (including neural networks and support vector
machines (SVM)), instance libraries, probabilistic summaries, and so on. Table 2.1 summa-
rizes the major techniques that have been used for intrusion detection, some of which can
be employed in both generative and discriminative manners.

It is non-trivial to compare these techniques against each other as each has its own
strengths and weaknesses, let alone their different knowledge representations. In general,
rule-based approaches can provide rules that are easy to understand, but they require
expensive training process as many neural nets based learning methods do. On the other
hand, the cost of classifying a new instance is high for instance-based and immunological-
based approaches since the new instance is often compared with a large corpus of normal
or abnormal instances. Methods based on clustering and probability density estimation

approaches usually require a larger number of samples than other approaches.
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Table 2.1: Summary of major machine learning techniques for intrusion detection.

15

Style Knowledge Learning algorithm Features
representation examples
Classification rules RIPPER [63] [38][106], | Concise and intuitive
Rule-based that characterize time-based inductive rules, easy to
normal (and intrusive) learning [100] understand and
inspect
Self (or non-self)
Immunological- | model representing the Negative selection, Suitable for
based set of normal (or positive selection distributed
anomalous) instances. [30] [26] processing
Neural nets Linear /non-linear Recurrent networks [33] High classification
classification functions SVM [86][40] accuracy

Instance-based

Instance library

k-nearest neighbor
[59][67]

No training involved,
classification cost can
be high when
library is large

Clustering and

Clusters in input (or

k-nearest neighbor,
one-class SVM [24],

Unsupervised

outlier feature) space density based local learning, no
detection outliers [60] class label required

Markov models [106][57], Robust over

Probabilistic Probability Mixture model [23], noisy data,
learning summaries Bayesian networks [54] require large data




2.3 Audit Data

In order to detect intrusions, some source of information in which the intrusion is
manifest must be observed and some analysis that can reveal the intrusion must be per-
formed. Systems that obtain the data to analyze from the operating system or applications
subject to attack are called host based. The events audited by operating systems usually
include the use of identification and authentication mechanisms (login etc.), file opens and
program executions, deletion of objects, administrative actions, and other security relevant
events. The audit trail should be protected from unauthorized access or tampering. Most
modern operating systems have such basic auditing capabilities. Windows NT and Solaris
are examples that support the so-called C2-level security audit. The Solaris BSM audit
mechanism [84], in particular, provides the ability to collect detailed security relevant data
at the system call level. Most host-based systems collect data continuously as the system
is operating. The substantial amount of auditing, however, could impact the host system
performance and require large storage space. In addition, some intrusions may not directly
manifest themselves in the audit trial.

Alternatively, network based intrusion detection systems observe the network traf-
fic that goes to and from the monitored system(s) and look for signs of intrusions in that
data. The advantage of network based data collection is that a single sensor, properly
placed, can monitor a number of hosts and can look for attacks that target multiple hosts.
However, the rapidly increasing network data rates and encrypted connections are the ma-
jor challenges for network monitoring. Depending on the type of information that is used
for intrusion detection, we can further distinguish between traffic and application models.
Systems that use traffic models monitor the flow of network packets. The source and des-
tination IP addresses and port numbers are used to determine the features such as the
number of total connection arrivals in a certain period of time, the inter-arrival time be-
tween packets or the number of packets to/from a certain host. These features, in turn, are
used to model the normal traffic and detect attacks such as port scans or denial-of-service
attacks. In contrast, the application (or service) model attempts incorporate application

specific knowledge of the network services (e.g., HTTP, DNS, FTP) to detect more sophis-
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ticated attacks. The packet header as well as the application payload information is used
to establish the normal traffic model for each service.

In order to facilitate quantitative evaluations of IDS performance and comparisons
of different intrusion detection methods, researchers have realized the need for standardized
datasets. Described below are several widely cited and publicly available host-based and
network-based datasets for research purposes. To our knowledge, there are some privately
owned audit datasets, including Windows NT user profiling data and network traffic data,

which are not available in the public domain.

2.3.1 DARPA/KDD Datasets

Sponsored by the Department of Defense Advanced Research Projects Agency
(DARPA), the MIT Lincoln Laboratory conducted the most comprehensive evaluations of
research IDSes in 1998 and 1999 [69][70]. In these evaluations, researchers were given sensor
data in the form of sniffed network traffic (TCPdump), Solaris BSM audit data, Windows
NT audit data and file-system snapshots and asked to identify the intrusions that had been
carried out during the data collection period. The evaluation effort used a testbed, which
generated live background traffic similar to that on an Air Force base containing hundreds
of users on thousands of hosts. During the 1999 evaluation, more than 200 instances of
58 attack types (including stealthy and novel attacks) were embedded in seven weeks of
training data and two weeks of test data. Automated attacks were launched against three
UNIX victim machines (SunOS, Solaris, Linux), Windows NT hosts, and a router in the
presence of background traffic. Attack categories include DoS, probe, remote-to-local, and
user-to-super-user attacks. The DARPA evaluations resulted in the development of an
intrusion detection corpus that includes weeks of background traffic and host audit logs,
and hundreds of labeled and documented attacks [16]. Part of this corpus, the preprocessed
TCPdump data consisting of 41 features, was used for the 1999 KDD Cup contest [22], held
at the fifth ACM International Conference on Knowledge Discovery and Data Mining. The
DARPA corpus, especially the preprocessed KDD dataset portion, has been used extensively
by researchers.

The DARPA evaluations have been criticized for their design and execution, how-
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ever. As pointed out in [81], the flaws in the DARPA evaluations include failures to appro-
priately validate the background data (especially with respect to its ability to cause false
alarms), the lack of an appropriate unit of analysis for reporting false alarms and the use
of questionable or inappropriate data analysis and presentation techniques. Nevertheless,
it is still possible to mix the well-behaved DARPA data with real-world data and conduct

meaningful intrusion detection analysis [76].

2.3.2 UNM System Call Data

In a ground-breaking study, Forrest et al. [30] discovered that the short sequences
of system calls made by a UNIX program during its normal execution are very consistent.
More importantly, the sequences are different from the sequences of its abnormal, exploited
executions as well as the executions of other programs. Therefore a concise database con-
sisting of these normal sequences can be used as the “self” definition of the normal behavior
of a program, and as the basis to detect anomalies (i.e., “non-self”). A number of follow-
on studies, for example, [62][106] [33], attempted alternative models with the system call
sequences including classification rules, neural nets, hidden Markov model, variable-length
patterns, etc..

Forrest’s group has collected several data sets of system calls executed by ac-
tive processes and made them publicly available at University of New Mexico [87]. These
datasets include different kinds of programs (e.g., programs that run as daemons and those
that do not), programs that vary widely in their size and complexity, and different kinds of
intrusions (buffer overflows, symbolic link attacks, and Trojan programs). Only programs
that run with privilege are included, because misuse of these programs has the greatest

potential for harm to the system.

2.3.3 UNIX Command Data

User profiling has been considered as an important technique for detecting an
insider or masqueraders misuse of information systems. The underlying assumption is that
hostile activity is unusual activity that will manifest as significant excursions from normal

user profiles. A user profile contains information that characterizes a system users behavior,
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such as commands issued, files normally accessed, resource usage, periods of time that user
is normally logged in, keystroke patterns, and a wide variety of other attributes. A popular
choice has been the user commands. Lane and Brodley [59] [57] modeled truncated UNIX
command data (no arguments) for intrusion detection using instance-based models and
hidden Markov models. Two different user populations were used in their study. The first
group comprised eight different UNIX users at Purdue University, monitored over the course
of more than two years. This set of UNIX command data does not appear to be publicly
available now. The second group is a subset of the 168 users monitored by Saul Greenberg
at the University of Calgary. The original Greenberg data, documented in [35], comprised
full command line entries from 168 volunteer users of the UNIX csh system. The data are
further split into four groups: 55 novice users, 36 experienced users, 52 computer-scientist
users, and 25 non-programmer users, all of whom were affiliated with the University of
Calgary (Canada) as students, faculty, researchers or staff. This user command dataset is
available for research use on request.

Schonlau and his colleagues applied a number of techniques, including Bayes 1-
Step Markov, Hybrid Multi-Step Markov, IPAM, and so forth [94], to the same UNIX
command dataset. The data, available online at http://www.schonlau.net/, contains user
IDs and command names only (no arguments). This limitation was imposed for privacy
reasons. The first 15,000 commands for each of about 70 users were recorded over a period
of several months. Some users generated 15,000 commands in a few days; others took a few
months. Some commands not explicitly typed by the user (e.g., those generated by shell
files or scripts) were also included, as were names of executable programs. To evaluate the
intrusion detection performance, Schonlau et al. [94] randomly selected 50 users out of the
70 from whom data were collected to serve as intrusion targets. The remaining 20 users were
used as masqueraders and their commands were interspersed into the data of the 50 intrusion
targets. Each users data was decomposed into 150 blocks of 100 commands each. The first
50 blocks (5000 commands) of all users, free of contamination by masqueraders, were kept
aside as training data. The last 10,000 (masquerader-injected with certain probability)
commands were used as testing data for each user. Maxion and Townsend [80] suggested

that command line data alone, without arguments, is not enough to profile users. More
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recently, using the Greenberg data as the testbed, Maxion [79] demonstrated that the
command data, enriched with command-line flags and arguments, facilitated masquerade
detection with a significant reduction in the overall cost of errors, compared to truncated

user command data.
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Chapter 3

Learning Program Behavior with

K-Nearest Neighbor Classifier

3.1 Introduction

Intrusions most often occur when programs are misused. In Unix, intruders usu-
ally gain super-user status by exploiting privileged programs. A program profile can be
generated by monitoring the program execution and capturing the system calls associated
with the program. Compared to user behavior profiles, program profiles are more stable
over time because the range of program behavior is more limited. Furthermore, it would
be more difficult for attackers to perform intrusive activities without revealing their tracks
in the execution logs. Therefore program profiles provide concise and stable tracks for in-
trusion detection. However, almost all the research in learning program behavior has used
short sequences of system calls as the observable, and generated a large individual database
of system call sequences for each program. A program’s normal behavior is characterized
by its local ordering of system calls, and deviations from their local patterns are regarded as
violations of an executing program. It is still a tedious and costly approach because system
and application programs are constantly updated, and it is difficult to build profiles for all
of them.

In this chapter, we discuss a new technique for learning program behavior in intru-
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sion detection. Our approach employs the k-Nearest Neighbor (KNN) classifier to categorize
each new program behavior into either normal or intrusive class. The frequencies of system
calls used by a program, instead of their local ordering, are used to characterize the pro-
gram’s behavior. Each system call is treated as a “word”, and each process, i.e., program
execution, as a “document”. Then the NN algorithm, which has been successful in text
categorization applications [109], can be easily adapted to intrusion detection. Since there
is no need to build a profile for each program and check every sequence during the new
program execution, the amount of calculation involved is largely reduced.

The rest of this chapter is organized as follows. Section 2 surveys related work.
We explain the analogy between text categorization and intrusion detection and the ANN
classifier in Section 3. Section 4 describes our experiments with the 1998 DARPA data, and

Section 5 contains further discussions. Finally, we summarize our conclusions in Section 6.

3.2 Related Work

Ko et al. at UC Davis first proposed to specify the intended behavior of some
privileged programs (setuid root programs and daemons in Unix) using a program policy
specification language [52]. During the program execution, any violation of the specified
behavior was considered “misuse”. The main limitation of this method is the difficulty
of determining the intended behavior and writing security specifications for all monitored
programs. Nevertheless, this research opened the door of modeling program behavior for
intrusion detection.

Forrest’s group at the University of New Mexico introduced the idea of using short
sequences of system calls issued by running programs as the discriminator for intrusion
detection [30]. Normal behavior was defined in terms of short sequences of system calls of a
certain length in a running Unix process, and a separate database of normal behavior was
built for each process of interest. This work was extended with various classification schemes
such as artificial immune systems [29], rule learning [62] and Hidden Markov Model (HMM)
[106]. Ghosh and others [33] employed artificial neural network techniques to learn program

behavior profiles with system call sequences for the 1998 DARPA BSM data. More than
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150 program profiles were established. For each program, a neural network was trained and
used for anomaly detection. Their Elman recurrent neural networks were able to detect
77.3% of all intrusions with no false positives, and 100% of all attacks with about 10%
miss-classified normal sessions.

Unlike most researchers who concentrated on building individual program profiles,
Asaka et al. [3] introduced a method based on discriminant analysis. Without examining
all system calls, an intrusion detection decision was made by analyzing only 11 system calls
in a running program and calculating the program’s Mahalanobis’ distances to normal and
intrusion groups of the training data. There were 4 instances that were misclassified out of
42 samples. Due to its small size of sample data, however, the feasibility of this approach
still needs to be established.

Our approach treats the system calls differently. Instead of looking at the local
ordering of the system calls, our method uses the frequencies of system calls to characterize
program behavior. Using the text processing metaphor, each system call is treated as a
“word” in a long document and the set of system calls generated by a process is treated as
the “document”. This analogy makes it possible to bring the full spectrum of well-developed
text processing methods [1] to bear on the intrusion detection problem. One such method

is the k-nearest neighbor classification method.

3.3 K-Nearest Neighbor Text Categorization Method

Text categorization is the process of grouping text documents into one or more
predefined categories based on their content. A number of statistical classification and
machine learning techniques have been applied to text categorization, including regression
models, Bayesian classifiers, decision trees, nearest neighbor classifiers, neural networks,
and support vector machines [1].

The first step in text categorization is to transform documents, which typically
are strings of characters, into a representation suitable for the learning algorithm and the
classification task. The most commonly used document representation is the so-called vector

space model. In this model, each document is represented by a vector of words. A word-
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by-document matrix A is used for a collection of documents, where each entry represents
the occurrence of a word in a document, i.e., A = (a;j), where a;; is the weight of word i in
document j. There are several ways of determining the weight a;;. Let f;; be the frequency
of word 7 in document j, N the number of documents in the collection, M the number of
distinct words in the collection, and n; the total number of times word i occurs in the whole
collection. The simplest approach is Boolean weighting, which sets the weight a;; to 1 if the
word occurs in the document and 0 otherwise. Another simple approach uses the frequency

of the word in the document, i.e.,
aij = fij (3.1)
A more common weighting approach is the so-called tf -idf (term frequency - inverse docu-

ment frequency) weighting:

a;j = fij X log (nﬁ) (3.2)

i
A slight variation [56] of the #f -idf weighting, which takes into account that documents may

be of different lengths, is the following:

fii log (5) (3.3)

Qjj = ——————
! \/W i
1=1Jij

For matrix A, the number of rows corresponds to the number of words M in the
document collection. There could be hundreds of thousands of different words. In order to
reduce the high dimensionality, stop-word (frequent word that carries no information) re-
moval, word stemming (suffix removal) and additional dimensionality reduction techniques,
feature selection or re-parameterization [1], are usually employed.

To classify a class-unknown document X, the kNearest Neighbor classifier algo-
rithm ranks the document’s neighbors among the training document vectors, and uses the
class labels of the £ most similar neighbors to predict the class of the new document. The
classes of these neighbors are weighted using the similarity of each neighbor to X, where
similarity is measured by Euclidean distance or the cosine value between two document

vectors. The cosine similarity is defined as follows:

> tie(xnp;) Ti X dij
sim(X,D;) = — / 3.4
2 D0) = = 1XTa < D1 (34
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Table 3.1: Analogy between text categorization and intrusion detection when applying the
kNN classifier.

Terms Text categorization Intrusion Detection
N total number of documents total number of processes
M total number of distinct words total number of distinct system calls
n; number of times ith word occurs number of times ith system call was issued
fij frequency of ith word in document j | frequency of ith system call in process j
D, jth training document jth training process
X test document test process

where X is the test document, represented as a vector; D; is the jth training document; ¢;

is a word shared by X and Dj; z; is the weight of word ¢; in X; d;; is the weight of word ¢;

in document Dj; | X|l2 = v/z% + 2% + 22 + ... is the norm of X, and || D;||2 is the norm of
D;. A cutoff threshold is needed to assign the new document to a known class.

The kNN classifier is based on the assumption that the classification of an instance
is most similar to the classification of other instances that are nearby in the vector space.
Compared to other text categorization methods such as Bayesian classifier, kNN does not
rely on prior probabilities, and it is computationally efficient. The main computation is the
sorting of training documents in order to find the k nearest neighbors for the test document.

We seek to draw an analogy between a text document and the sequence of all
system calls issued by a process, i.e., program execution. The occurrences of system calls
can be used to characterize program behavior and transform each process into a vector.
Furthermore, it is assumed that processes belonging to the same class will cluster together
in the vector space. Then it is straightforward to adapt text categorization techniques to
modeling program behavior. Table 3.1 illustrates the similarity in some respects between
text categorization and intrusion detection when applying the kNN classifier.

There are some advantages to applying text categorization methods to intrusion
detection. First and foremost, the size of the system-call vocabulary is very limited. There
are less than 100 distinct system calls in the DARPA BSM data, while a typical text
categorization problem could have over 15000 unique words [1]. Thus the dimension of

the word-by-document matrix A is significantly reduced, and it is not necessary to apply
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any dimensionality reduction techniques. Second, we can consider intrusion detection as
a binary categorization problem, which makes adapting text categorization methods very

straightforward.

3.4 Experiments

3.4.1 Dataset

We applied the k-Nearest Neighbor classifier to the 1998 DARPA data. The 1998
DARPA Intrusion Detection System Evaluation program provides a large sample of com-
puter attacks embedded in normal background traffic[16]. The TCPDUMP and BSM audit
data were collected on a network that simulated the network traffic of an Air Force Local
Area Network. The audit logs contain seven weeks of training data and two weeks of testing
data. There were 38 types of network-based attacks and several realistic intrusion scenarios
conducted in the midst of normal background data.

We used the Basic Security Module (BSM) audit data collected from a victim
Solaris machine inside the simulation network. The BSM audit logs contain information on
system calls produced by programs running on the Solaris machine. See [84] for a detailed
description of BSM events. We only recorded the names of system calls. Other attributes of
BSM events, such as arguments to the system call, object path and attribute, return value,
etc., were not used here, although they could be valuable for other methods.

The DARPA data was labeled with session numbers. Each session corresponds to a
TCP/IP connection between two computers. Individual sessions can be programmatically
extracted from the BSM audit data. Each session consists of one or more processes. A
complete ordered list of system calls is generated for every process. A sample system call
list is shown below. The first system call issued by Process 994 was close, execve was the
next, then open, mmap, open and so on. The process ended with the system call exit.

Process ID: 99/



Table 3.2: List of 50 distinct system calls that appear in the training dataset.

access audit auditon  chdir chmod chown close creat
execve exit fchdir fchown  fentl fork forkl getaudit
getmsg  ioctl kill link login logout Istat memcntl
mkdir mimap munmap nice open pathdonf pipe putmsg
readlink rename  rmdir setaudit setegid seteuid setgid  setgroups
setpgrp  setrlimit setuid stat statvfs su sysinfo unlink
utime vfork
close  erecve open mmap open  mMmap MMap MUNMAP MMap
mmap close  open mmap close open  mmap mmap munmap
mmap close close munmap open ioctl access  chown octl
access chmod close close close close  close  exit

The numbers of occurrences of individual system calls during the execution of a
process were counted. Then text weighting techniques were used to transform the process
into a vector. We used two weighting methods, frequency weighting defined by (3.1) and #f
-idf weighting defined by (3.3), to encode the processes.

During our off-line data analysis, our dataset included system calls executed by all
processes except the processes of the Solaris operating system such as the inetd and shells,

which usually spanned several audit log files.

3.4.2 Anomaly Detection

First we implemented intrusion detection solely based on normal program behav-
ior. In order to ensure that all possible normal program behaviors are included, a large
training dataset is preferred for anomaly detection. On the other hand, a large training
dataset means large overhead in using a learning algorithm to model program behavior.
There are 5 simulation days that were free of attacks during the seven-week training period.
We arbitrarily picked 4 of them for training, and used the fifth one for testing. Our training
normal dataset consists of 606 distinct processes running on the victim Solaris machine dur-
ing these 4 simulation days. There are 50 distinct system calls observed from the training
dataset, which means each process is transformed into a vector of size 50. Table 3.2 lists all
the 50 system calls.

Once we have the training dataset for normal behavior, the ANN text categorization
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build the training normal dataset D;
for each process X in the test data do
if X has an unknown system call then
X is abnormal;
else then
for each process D; in training data do
calculate sim (X, D;);
if sim(X, D;) equals 1.0 then
X is normal; exit;
find k biggest scores of sim (X, D);
calculate sim_avg for k-nearest neighbors;
if sim_avg is greater than threshold then
X is normal;
else then

X is abnormal;

Figure 3.1: Pseudo code for the kNN classifier algorithm for anomaly detection.

method can be easily adapted for anomaly detection. We scan the test audit data and
extract the system call sequence for each new process. The new process is also transformed
to a vector with the same weighting method. Then the similarity between the new process
and each process in the training normal process dataset is calculated using Equation 3.4.
If the similarity score of one training normal process is equal to 1, which means the system
call frequencies of the new process and the training process match perfectly, then the new
process would be classified as a normal process immediately. Otherwise, the similarity
scores are sorted and the k£ nearest neighbors are chosen to determine whether the new
program execution is normal or not. We calculate the average similarity value of the &
nearest neighbors (with highest similarity scores) and set a threshold. Only when the
average similarity value is above the threshold, is the new process considered normal. The

pseudo code for the adapted kNN algorithm is presented in Figure 3.1.
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In intrusion detection, the Receiver Operating Characteristic (ROC) curve is usu-
ally used to measure the performance of the method. The ROC curve is a plot of intrusion
detection accuracy against the false positive probability. It can be obtained by varying
the detection threshold. We formed a test dataset to evaluate the performance of the kNN
classifier algorithm. The BSM data of the third day of the seventh training week was chosen
as part of the test dataset (none of the training processes was from this day). There was
no attack launched on this day. It contains 412 sessions and 5285 normal processes (We
did not require the test processes to be distinct in order to count false alarms for one day).
The rest of the test dataset consists of 55 intrusive sessions chosen from the seven-week
DARPA training data. There are 35 clear or stealthy attack instances included in these
intrusive sessions (some attacks involve multiple sessions), representing all types of attacks
and intrusion scenarios in the seven-week training data. Stealthy attacks attempt to hide
perpetrator’s actions from someone who is monitoring the system, or the intrusion detection
system. Some duplicate attack sessions of the types eject and warezclient were skipped and
not included in the test dataset. When a process is categorized as abnormal, the session
that the process is associated with is classified as an attack session. The intrusion detection
accuracy is calculated as the rate of detected attacks. Each attacks counts as one detec-
tion, even with multiple sessions. Unlike the groups who participated in the 1998 DARPA
Intrusion Detection Evaluation program [69], we define our false positive probability as the
rate of mis-classified processes, instead of mis-classified sessions.

The performance of the kNN classifier algorithm also depends on the value of k,
the number of nearest neighbors of the test process. Usually the optimal value of k is
empirically determined. We varied k’s value from 5 to 25. Figure 3.2 shows the ROC
curves for 3 different k values when the processes are transformed with the #f -idf weighting
method. For this particular dataset, k=10 is a better choice than other values in that
the attack detection rate reaches 100% faster. For k=10, the kNN classifier algorithm can
detect 10 of the 35 attacks with zero false positive rate. And the detection rate reaches
100% rapidly when the threshold is raised to 0.72 and the false positive rate remains as low
as 0.44% (23 false alarms out of 5285 normal processes) for the whole simulation day.

We also employed the frequency weighting method to transform the processes of
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Figure 3.2: Performance of the kNN classifier method expressed in ROC curves for the tf
-idf weighting method. False positive rate vs attack detection rate for k=5, 10 and 25.

the same training and test datasets. Similarly, for the frequency weighting method, k=15
provides the lowest false positive rate 0.87% (46 false alarms out of 5285 normal processes)
when the attack detection rate reaches 100% with the threshold value of 0.99. The reason
for the high threshold value is that some attack instances are very similar to the normal
processes with the frequency weight. A comparison of two different weighting methods is
shown in Figure 3.3. while the frequency weighting method offers a desirable high attack
detection rate (86%) at zero false positives, the tf -idf weighting method provides lower false
positive rate at 100% attack detection rate. It appears that the tf -idf weighting can make
process vectors of two classes more distinguishable than the frequency weighting. Therefore,
a lower threshold value is needed, and better false positive rate can be achieved with the #f

-1df weighting method.

3.4.3 Anomaly Detection Combined with Signature Verification

We have just shown that the kNN classifier algorithm can be implemented for ef-
fective abnormality detection. The overall running time of the ANN method is O(N), where
N is the number of processes in the training dataset (usually & is a small constant). When N
is large, this method could still be computationally expensive for some real-time intrusion

detection systems. In order to detect attacks more effectively, the kNN anomaly detection
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Figure 3.3: ROC curves for tf -idf weighting (k=10) and frequency weighting (k=15).

can be easily integrated with signature verification. The malicious program behavior can
be encoded into the training set of the classifier. After carefully studying the 35 attack
instances within the seven-week DARPA training data, we generated a dataset of 19 in-
trusive processes. This intrusion dataset covers most attack types of the DARPA training
data. It includes the most clearly malicious processes, including ejectexploit, formatexploit,
[fbezploit [50] and so on.

For the improved NN algorithm, the training dataset includes 606 normal pro-
cesses as well as the 19 aforementioned intrusive processes. The 606 normal processes are
the same as the ones in subsection 4.2. Each new test process is compared to intrusive
processes first. Whenever there is a perfect match, i.e., the cosine similarity is equal to 1.0,
the new process is labeled as intrusive behavior (one could also check for near matches).
Otherwise, the abnormal detection procedure in Figure 3.1 is performed. Due to the small
amount of the intrusive processes in the training dataset, this modification of the algorithm
only causes minor additional calculation for normal testing processes.

The performance of the improved ANN classifier algorithm was evaluated with 24
attacks within the two-week DARPA testing audit data. The DARPA testing data contains
some known attacks as well as novel ones. Some duplicate instances of the eject attack

were not included in the test dataset. The false positive rate was evaluated with the same
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Table 3.3: Attack detection rate for DARPA testing data when anomaly detection is com-
bined with signature verification.

Attack Instances | Detected | Detection rate
Known attacks 16 16 100%
Novel attacks 8 6 5%

Total | 24 [ 22 [ 91.7% |

5285 testing normal processes as described in Section 4.2. Table 3.3 presents the the attack
detection accuracy for the tf -idf weighting (k=10 and threshold = 0.8) and the frequency
weighting (k = 15 and threshold = 0.99). For the ¢f -idf weighting method, the false positive
rate is 0.59% (31 false alarms) when the threshold is adjusted to 0.8. For the frequency
weighting, the false positive rate remains at 0.87% with the threshold of 0.99.

The two missed attack instances were a new denial of service attack, called process
table. They matched with one of training normal processes exactly, which made it impossible
for the kNN algorithm to detect. The process table attack was implemented by establishing
connections to the telnet port of the victim machine every 4 seconds and exhausting its
process table so that no new process could be launched [50]. Since this attack consists
of abuse of a perfectly legal action, it didn’t show any abnormality when we analyzed
individual processes. Characterized by an unusually large number of connections active on
a particular port, this denial of service attack, however, could be easily identified by other
intrusion detection methods.

Among the other 22 detected attacks, eight were captured with signature verifica-

tion for the tf -idf weighting and two for the frequency weighting.

3.5 Discussion

The RSTCORP group [33] gave good performance during the evaluation of the
1998 DARPA BSM data [69]. A neural network was trained for each program. Their Elman
recurrent neural networks were able to detect 77.3% of all intrusions with no false positives,
and 100% of all attacks with about 10% miss-classified normal sessions. which means 40

to 50 false positive alarms for a typical simulation day with 500 sessions. Their test data
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consisted of 139 normal sessions and 22 intrusive sessions. Since different test datasets were
used, it is difficult to compare the performance of our kNN classifier with that of the Elman
networks. In spite of that, the kNN classifier avoids the time-consuming training process,
and more importantly, bypasses the need to learn individual program profiles separately.
Thus the cost of learning program behavior is significantly decreased.

Unlike the tf -idf weighting, the frequency-weighting method assigns the number
of occurrences of a system call during the process execution to a vector entry. Each process
vector does not carry any information on other processes. A new training process could be
easily added to the training dataset without changing the weights of the existing training
samples. Therefore the frequency-weighting method makes the ANN classifier method more
suitable for dynamic environments that requires frequent updates of the training data.

In our current implementation, we used all the system calls to represent program
behavior. The dimension of process vectors, and hence the classification cost, can be further
reduced by only using the most influential system calls.

Our approach is predicated on the following properties: the frequencies of system
calls issued by a program appear consistently across its normal executions and unseen
system calls will be executed or unusual frequencies of the invoked system calls will appear
when the program is exploited. We believe these properties hold true for many programs.
However, if an intrusion does not reveal any anomaly in the frequencies of system calls,
our method would miss it. For example, attacks that consist of abuse of perfectly normal
processes such as process table would not be identified by the kNN classifier.

With the kNN classifier method, each process is classified when it terminates. We
point out that it could still be suitable for real-time intrusion detection. Each intrusive
attack is usually conducted within one or more sessions, and every session contains several
processes. Since the kNN classifier method monitors the execution of each process, it is very
likely that an attack can be detected while it is in operation. However, it is possible that
an attacker can avoid being detected by not letting the process exit. Nonetheless, the kNN
classifier could be integrated with other methods [15] that utilize the ordering information

of system calls for performance enhancement.
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3.6 Summary

In this chapter we have presented a new algorithm based on the k-Nearest Neighbor
classifier method for modeling program behavior in intrusion detection. Qur experiments
with the 1998 DARPA BSM audit data have shown that this approach is able to effectively
detect intrusive program behavior. Compared to other methods using short system call
sequences, the kNN classifier doesn’t have to build separate profiles of short system call
sequences for different programs, thus the calculation involved with classifying new program
behavior is largely reduced. Our results also show that the a low false positive rate can
be achieved. While this result may not hold against a more sophisticated dataset, text
categorization techniques appear to be well applicable to the domain of intrusion detection.

Further research is needed to investigate the reliability and scaling properties of

the ANN classifier method. Other directions of future work include:
e How to select the most relevant system calls for classification?

e Quantitative comparison between the kNN classifier and other machine learning meth-

ods.

e Mixed modeling of program behavior using both local ordering of system calls and

system call frequencies.
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Chapter 4

Adaptive Anomaly Detection with

Evolving Connectionist Systems

4.1 Introduction

In order to be effective in a practical environment, anomaly detection systems
have to be capable of online learning and concept drift handling. In this chapter, we
present an adaptive anomaly detection framework that is suitable for dynamic, changing
environments. Our framework employs unsupervised evolving connectionist systems to learn
system, network or user behavior in an online, adaptive fashion without a priori knowledge
of the underlying non-stationary data distributions. Normal behavior changes are efficiently
accommodated while anomalous activities can still be identified.

Adaptive learning and evolving connectionist systems are an active area of artificial
intelligence research. Evolving connectionist systems are artificial neural networks that
resemble the human cognitive information processing models. They are stable enough to
retain patterns learned from previously observed data while being flexible enough to learn
new patterns from new incoming data. Due to their self-organizing and adaptive nature,
they provide powerful tools for modeling evolving processes and knowledge discovery [48].

Our adaptive anomaly detection framework performs one-pass clustering of the

input data stream that represents a monitored subject’s behavior patterns. Each new
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incoming instance is assigned to one of the three states: normal, uncertain and anomalous.
Two different alarm levels are defined to reduce the risk of false alarming. We evaluated
our adaptive anomaly detection systems, based on the Fuzzy Adaptive Resonance Theory
(Fuzzy ART) [11] and Evolving Fuzzy Neural Networks (EFuNN) [47], over two types of
datasets, the KDD Cup 1999 network data [22] and Windows NT user profiling data.
Our experiments show that both evolving connectionist systems are able to adapt to user
or network normal behavior changes and at the same time detect anomalous activities.
Compared to support vector machines (SVM) based static learning, our adaptive anomaly
detection systems significantly reduced the false alarm rate.

The rest of this chapter is organized as follows. In Section 2 we review some related
work on adaptive anomaly detection. Section 3 presents our adaptive framework and a brief
introduction to Fuzzy ART and EFulNN. Section 4 details our experiments with the KDD
Cup 1999 network data and the Windows NT user profiling data. Section 5 provides further

discussions and Section 6 summarizes our conclusions and future work.

4.2 Related Work

To handle concept drift and non-stationary data distributions, a common practice
is to forget out-of-data statistics of the data and favor recent events using a decay or ag-
ing factor. For example, NIDES [44] compares a user’s short-term behavior to the user’s
long-term behavior. The user profiles keep statistics such as frequency table, means and
covariance, which are constantly aged by multiplying them by an exponential decay factors.
This method of aging creates a moving time window for the profile data, so that the new
behavior is only compared to the most recently observed behaviors that fall into the time
window. Similarly, SmartSifter [107][108] employs discounting algorithms to gradually fade
the effect of past examples. Mahoney and Chan [75] took training decay to the extreme by
discarding all events before the most recent occurrence. There is one theoretical and one
practical problem with this aging or time window approach. Theoretically, no justification
has been provided for the assumption that a user’s behavior changes gradually. Notwith-

standing this theoretical gap, the decay factor is usually chosen in an ad-hoc manner. By
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contrast, our evolving connectionist systems are able to adapt to normal behavior changes
without losing earlier information.

There were a few other previous efforts on adaptive intrusion detection. Teng et
al. [100] proposed a time-based inductive learning approach to perform adaptive real time
anomaly detection. Sequential rules were generated dynamically to adapt to changes in a
user’s behavior. Lane and Brodley [58] proposed a nearest neighbor classifiers based online
learning scheme and examined the issues of incremental updating of system parameters
and instance selection. Finite mixture models were employed in [25] to generate adaptive
probabilistic models and detect anomalies within a dataset. Fan [27] used ensembles of
classification models to adapt existing models in order to detect newly established patterns.
Hossain and Bridges [39] proposed a fuzzy association rule mining architecture for adaptive
anomaly detection.

Compared to previous statistical and rule-learning based adaptive anomaly detec-
tion systems, our framework does not require a priori knowledge of the underlying data
distributions. Through the use of evolving connectionist systems, it provides efficient adap-
tation to new patterns in a dynamic environment. Unlike other neural networks that have
been applied to intrusion detection (e.g., [17] [33]) as “black boxes,” our evolving connec-
tionist systems can provide knowledge (i.e., the weight vectors) to “explain” the learned
normal behavior patterns.

Our approach also falls into the category of unsupervised anomaly detection [24]
[60] as it does not require the knowledge of data labels. However, our algorithms assign
each instance into a cluster in an online, adaptive mode. No distinction between training
and testing has to be made. Therefore the period of system initialization during which all
behaviors are assumed normal is not necessary.

Another research project closely related to ours is ADMIT [95], which uses semi-
incremental clustering techniques to create user profiles. Different types of alarms are also

introduced.
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4.3 Adaptive Anomaly Detection Framework

In addressing the problem of adaptive anomaly detection two fundamental ques-
tions arise: (a) How to generate a model or profile that can concisely describe a subject’s
normal behavior, and more importantly, can it be updated efficiently to accommodate new
behavior patterns? (b) How to select instances to update the model without introducing
noise and incorporating abnormal patterns as normal? Our adaptive anomaly detection
framework addresses these issues through the use of online unsupervised learning methods,
under the assumption that normal instances cluster together in the input space, whereas
the anomalous activities correspond to outliers that lie in sparse regions of the input space.
Our framework is general in that the underlying clustering method can be any online un-
supervised evolving connectionist system and it can be used for different types of audit
data. Without loss of generality, we assume the audit data that is continuously fed into
the adaptive anomaly detection system has been transformed into a stream of input vectors
after pre-processing, where the input features describe the monitored subject’s behavior.

The evolving connectionist systems are designed for modeling evolving processes.
They operate continuously in time and adapt their structure and functionality through
a continuous interaction with the environment [48]. They can learn in unsupervised, su-
pervised or reinforcement learning modes. The online unsupervised evolving connectionist
systems provide one-pass clustering of an input data stream, where there is no predefined
number of different clusters that the data belong to.

A simplified diagram of an evolving connectionist system for online unsupervised
learning is given in Figure 4.1(a) (some systems such as EFuNN may have an additional
fuzzy input layer, shown in Figure 4.1(b), which represents the fuzzy quantization of the
original inputs with the use of membership functions [43]). A typical unsupervised evolving
connectionist system consists of two layers of nodes: an input layer that reads the input
vectors into the system continuously, and a pattern layer (or cluster layer) representing
previously learned patterns. Each pattern node corresponds to a cluster in the input space.
Each cluster, in turn, is represented by a weight vector. Then the subject’s normal behavior

profile is conveniently described as a set of weight vectors that represent the clustering of
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Figure 4.1: (a) A simplified diagram of an evolving connectionist system for unsupervised
learning. The system has n input nodes and m pattern nodes. There is a connection from
each input node to every pattern node. Some connections are not shown in the figure. (b)
An evolving connectionist system that has an additional fuzzy input layer. The task of the
fuzzy input nodes is to transfer the input values into membership degrees.



the previous audit data.

A distance measure has to be defined to measure the mismatch between a new
instance (i.e., a new input vector) and existing patterns. Based on the distance measure,
the system either assigns an input vector to one of the existing patterns and updates the
pattern weight vector to accommodate the new input, or otherwise creates a new pattern
node for the input. The details of clustering vary with different evolving connectionist
systems.

In order to reduce the risk of false alarms (classifying normal instances as abnor-
mal), we define three states of behavior patterns (i.e., the pattern nodes of the evolving
connectionist system): normal, uncertain and anomalous. Accordingly, each instance is
labeled as either normal, uncertain or anomalous. In addition, the alarm is differentiated
into two levels: Level 1 alarm and Level 2 alarm, representing different degrees of anomaly.
As illustrated in Figure 4.2, a new instance is assigned to one of the existing normal pat-
terns and labeled normal if the similarity between the input vector and the normal pattern
is above a threshold (the vigilance parameter). Otherwise, it is uncertain. The uncertain
instance is either assigned to one of the existing uncertain patterns if it is close enough to
that uncertain pattern, or becomes the only member of a new uncertain pattern. A Level
1 alarm is triggered whenever a new uncertain pattern is created as the new instance is
different from all the learned patterns and thus deserves special attention. At this point,
some preliminary security measures need to be taken. However, one can not draw a final
conclusion yet. The new instance can be truly anomalous or merely the beginning of a
new normal behavior pattern, which will be determined by the subsequent instances. After
the processing of a certain number (the Ny, parameter) of the subsequent instances in
the same manner, if the number of members of an uncertain pattern reaches a threshold
value (the Mingount parameter), the uncertain pattern becomes a normal pattern and the
labels of all its members are changed from wuncertain to normal. This indicates that a new
behavior pattern has been developed and incorporated into the subject’s normal behavior
profile as enough instances have shown the same pattern. On the other hand, after Nygtch
subsequent instances, any uncertain pattern with less than Min.gyn: members will be de-

stroyed and all its members are labeled anomalous. This will make sure that anomalous
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patterns, corresponding to the sparse regions in the input space, will not be included into
the normal profile. A Level 2 alarm is issued when an instance is labeled anomalous and
further response actions are expected.

1. Assign the first instance to a new uncertain pattern and label it uncertain.
2. Consider the next instance.
(a) If the similarity between this instance and one of the existing normal patterns is

above vigilance, assign it to the normal pattern and label it normal.

(b) If the instance is close enough to one of the existing uncertain patterns, assign it to

the uncertain pattern and label it uncertain.

(c) Otherwise, the instance becomes the only member of a new uncertain pattern. A

Level 1 alarm is triggered.
(d) Increase the age of each existing uncertain pattern by 1.

(e) for each uncertain pattern whose age has reached Nyutch, if it has more than
Min.oune members, it becomes a normal pattern and change the labels of all its
members from uncertain to normal. Otherwise, the uncertain pattern is destroyed

and all its members are labeled anomalous. Level 2 alarms are issued.

3. Repeat step 2 to process subsequent instances.

Figure 4.2: Pseudo code for adaptive anomaly detection.

The main tunable parameters of an adaptive anomaly detection system are sum-

marized as follows:

e Vigilance p. This threshold controls the degree of mismatch between new instances

and existing patterns that the system can tolerate.

e Learning rate 8. It determines how fast the system should adapt to a new instance

when it is assigned to a pattern.

® Nyatch- It is the period that the system will wait before making a decision on a newly



created uncertain pattern.

o Mincount, the minimum number of members that an uncertain pattern should have

in order to be recognized as a normal pattern.

Our framework does not require a priori knowledge of the number of input features.
When a new input feature is presented, the system simply adds a new input node to the
input layer and connections from this newly created input node to the existing pattern
nodes. This can be very important when the features that describe a subject’s behavior
grow over time and can’t be foreseen in a dynamic environment. Similarly, accommodation
of a new pattern is efficiently realized by creating a new pattern node and adding connections
from input nodes to this new pattern node. The rest of the structure remains the same.

With the framework, the learned normal profile is expressed as a set of weight
vectors representing the coordinates of the cluster centers in the input space. These weight
vectors can be interpreted as a knowledge presentation that can be used to describe the
subject’s behavior patterns, and thus they can facilitate understanding of the subject’s
behavior. The weight vectors are stored in the long term memory of the connectionist
systems. Since new instances are compared to all previously learned patterns, recurring
activities would be recognized easily.

While the underlying clustering method of the adaptive anomaly detection frame-
work can be any unsupervised evolving connectionist system, Fuzzy ART and the unsuper-
vised learning version of EFuNN are adapted for anomaly detection in this paper. Both
of them are conceptually simple and computationally fast. Furthermore, they cope well
with fuzzy data, and the fuzzy distance measures help to smooth the abrupt separation of
normality and abnormality of a subject’s behavior. Below is a brief introduction to Fuzzy

ART and EFulNN.

4.3.1 Fuzzy ART

Fuzzy ART [11] is a member of the Adaptive Resonance Theory (ART) neural
network family [10]. It incorporates computations from fuzzy set theory [43] into the ART

1 neural network. It is capable of fast stable unsupervised category learning and pattern

42



recognition in response to arbitrary input sequences.
Fuzzy ART clusters input vectors into patterns based on two separate distance
criteria, match and choice. For input vector X and pattern j, the match function is defined

by
X AW

Si(X) x|

(4.1)

where W; is the weight vector associated with pattern j. Here, the fuzzy AND operator A
is defined by
(X AY); = min(z;,y:), (4.2)

and the norm |- | is defined by

| X| = Z || (4.3)

The choice function is defined by

X AW

LX) = wi Wi (4.4)

where « is a small constant.
For each input vector X, Fuzzy ART assigns it to the pattern j that maximizes
T;(X) while satisfying S;(X) > p, where p is the vigilance parameter, 0 < p < 1. The

weight vector W; is then updated according to the equation

Wy = B AWY) + (1= gy, (4:5)

where £ is the learning rate parameter, 0 < § < 1. If no such pattern can be found, a new
pattern node is created. This procedure is illustrated in Figure 4.3.

In order to avoid the pattern proliferation problem, Fuzzy ART uses a complement
coding technique to normalize the inputs. The complement of vector X, denoted by X¢, is
defined by

(X9)i=1-— ;. (4.6)

For an n-dimensional original input X, the complemented coded input X’ to the Fuzzy

ART system is the 2n-dimensional vector

X'=(X,X°) = (1,T2, ey Tn,, TS, TG, .0, TE). (4.7)

ey by
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Figure 4.3: Flow graph representation of the Fuzzy ART algorithm.

4.3.2 EFuNN

EFuNN is one of the evolving connectionist systems developed by Kasabov [47]
that is capable of modeling evolving processes through incremental, online learning. It has
been successfully applied to bio-informatics, speech and image recognition [48]. The original
EFulNN has a five-layer structure. Here we only use its first three layers for unsupervised
learning (Figure 4.1(b)).

The fuzzy input layer transfers the original input values into membership degrees
with a membership function attached to the fuzzy input nodes. The membership function
can be triangular, Gaussian, and so on. The number and the type of the membership
function can be dynamically modified during the evolving process. In this research we used
the triangular membership function.

Unlike Fuzzy ART, EFuNN groups input vectors into patterns based on one dis-
tance measure only, the local normalized fuzzy distance between a fuzzy input vector Xy
and a weight vector W; associated with pattern j, which is defined by

_ Xy =W

D(X; W)= =L~ 7l
X5, W) | Xy + W[

(4.8)

where | - | denotes the same vector norm defined in Fuzzy ART. The local normalized fuzzy



distance between any two fuzzy membership vectors is within the range of [0, 1].

The rest of the clustering algorithm of EFuNN is very similar to that of Fuzzy
ART. When a new input vector X is presented, EFuNN calculates the corresponding fuzzy
input vector Xy and evaluates the normalized fuzzy distance between Xy and the existing
pattern weight vectors. The activation of the pattern node layer A is then calculated. The

activation of a single pattern node j is defined by
A(j) = f(D(Xy, Wy)), (4.9)

where f can be a simple linear function, for example, A(j) = 1 — D(Xy, W;). EFuNN finds
the closest pattern node j to the fuzzy input vector that has the highest activation value
A(j). If A(j) > p, where p is the vigilance parameter (the original EFuNN paper named
it semsitivity threshold [47]), the new input is assigned to the jth pattern and the weight

vector W; is updated according to the following vector operation:

new old old
Wi = w4 p(x; - W), (4.10)

where (3 is the learning rate. Otherwise, a new pattern node is created to accommodate the
current instance X.

The parameters p and S can be static, or they can be self-adjustable while the
structure of EFuNN evolves. They can hold the same values for all the patterns, or they can
be pattern-specific so that the pattern node that has more instance members will change
less when it accommodates a new instance. In our early implementation, all the pattern

nodes share the same static p and 8 values.

4.4 Experiments

In this section we describe some experiments. The emphasis of the experiments
is on the understanding of how Fuzzy ART and EFuNN based adaptive anomaly detection
systems work in practice. One objective of our experiments is to observe the influence of
variability of the tunable parameters on the performance of an anomaly detection system.
Another objective of the experiments is to compare SVM based static learning and evolving

connectionist system based adaptive learning.
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4.4.1 Static Learning via Support Vector Machines

The details on support vector machine based anomaly detection are presented
in Appendix A. In our experiments, we used SVM to demonstrate the weakness of static
learning and the importance of adaptive learning. SVM was employed to learn a model (i.e.,
support vectors) that fits the training dataset. The model was then tested on the testing
dataset without any update (thus it is static learning). SVM is optimal when the data
are independent and identically distributed (i.i.d.). If there was concept drift between the
training dataset and the testing dataset, SVM would generate classification errors. Adaptive
learning can adapt to concept changes incrementally and learn new patterns when new
testing instances are presented to the learning system. Therefore the classification accuracy
is improved.

In our research, we used LIBSVM (version 2.35) [13], an integrated tool for SVM

classification and regression.

4.4.2 Cost Function

To facilitate performance comparison among different methods, we used the cost
function:

Cost = (1 — hit rate) + v * false positive rate, (4.11)

where the hit rate is the rate of detected intrusions (attacks or masquerades), the false
positive rate is the probability that a normal instance is classified as anomalous, and the
parameter 7y represents the relative cost difference between a false alarm and a miss. There
is no obvious way to determine the value of v, since the cost of a false alarm as well as
the cost of a miss will vary from one environment to another. Here we set the v value to
6, which was used in [80], while other values are certainly applicable. Varying the tunable
parameters’ values results in different hit rates and false positive rates, and, subsequently,
different cost values. The lower cost, the better performance an intrusion detection system

has.
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4.4.3 Network Intrusion Detection

We conducted a series of experiments on a subset of the dataset KDD Cup 1999
[22] prepared for network intrusion detection. Many methods have been tested with this
popular dataset for supervised intrusion detection. The data labels were usually used for
training the learning systems. Our evolving connectionist systems, however, do not rely
on the data labels. They build network connection patterns incrementally in an online
unsupervised learning mode. Therefore they are not directly comparable to previously
proposed supervised learning methods.

The 1999 KDD Cup network traffic data are connection-based. Each data record,
described by 7 symbolic attributes and 34 continuous attributes, corresponds to a TCP/IP
connection between two IP addresses. In addition, a label is provided indicating whether
the record is normal or it belongs one of the four attack types (Probe, DoS, U2R and R2L).
The symbolic attributes that have two possible values (e.g., logged_in) were represented
by a binary entry with the value of 0 or 1. For symbolic attributes that have more than
two possible categorical values, we used multiple entries to encode them in the vector
representation, one entry for each possible value. The entry corresponding to the category
value has a value of 1 while the other entries are set to 0. The attribute service has 41
types, and we further classified them into {http, smitp, ftp, ftp_data, others} to reduce the
vector dimensions. The resulting feature vectors have a total of 57 dimensions.

Since different continuous attributes were measured on very different scales, the
effect of some attributes might be completely dwarfed by others that have larger scales.
Therefore we scaled the attributes to the range of [0, 1] by calculating:

v; — min(v;)

X; =
' maz(v;) — min(v;)’

(4.12)
where v; is the actual value of attribute 4, and the maximum and minimum are taken over
the whole dataset. However, we are aware that this scaling technique would not work if the
maximum and minimum values are not known a priori.

We formed a subset of the original dataset consisting of 97277 normal connections

and 9199 attacks by randomly sampling. We then conducted two experiments with this

subset. The first experiment (Ezp. 1) was designed to test our evolving connectionist
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Table 4.1: Numbers of normal and attack examples in Ezp. 1 and Ezp. 2.

Ezxp. 1 Ezp. 2
normal ‘ attacks || training normal ‘ testing normal ‘ attacks
| 97277 | 998 | 38910 \ 58367 | 580 |

systems. In the data stream of Ezp. 1, the attack examples randomly drawn from the 9199
attacks were inserted into the 97277 normal examples with a 1% probability. Fuzzy ART
and EFulNN were employed to model the network connections on the fly from an empty set
of normal patterns and detect the intrusions in the data stream. For the second experiment
(Ezp. 2), the training dataset and testing dataset were formed to compare the performance
between static learning and adaptive learning. The first 40% of the 97277 normal examples
were used for training, and the rest for testing. The testing dataset also included attacks
interspersed into the normal examples with the probability of 1%. The model learned from
the training examples was applied to the testing dataset. The model remained unchanged
during the testing process for static learning, while it was updated continuously for adaptive
learning methods. Table 4.1 lists the numbers of normal and attack examples in Ezp. 1

and FEzp. 2.

Effectiveness of Varying Vigilance

The wigilance parameter p controls the degree of mismatch between new instances
and previously learned patterns. The greater the value of vigilance, the more similar the
instances ought to be in order to be assigned to a pattern. We studied the effect of varying
p while keeping the values of other parameters fixed. Table 4.2 presents the results when
p’s value was varied from 0.9 to 0.99 with the data stream of Ezp. 1. The learning rate
parameter 3 was set to 0.1, Nyqgicn, Was 8 and Minoyn: was 4. The false positive rate was
calculated as the percentage of normal instances that were labeled anomalous out of the
97277 normal examples. Similarly, the hit rate was the percentage of detected attacks (i.e.,
labeled anomalous) out of the 998 attacks.

The results show that the false positive rate increases monotonically as the vigi-

lance threshold is raised. This is due to the fact that more normal instances are classified as
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Table 4.2: The performance (false positive rate, hit rate and cost) of Fuzzy ART and
EFuNN with the Exp. 1 data stream. Results illustrate the impact of varying p on their
performance.

Fuzzy ART EFuNN
P false positive rate ‘ hit rate ‘ cost || false positive rate ‘ hit rate ‘ cost
0.90 1.82% 79.8% | 0.311 0.259% 33.4% | 0.682
0.91 2.07% 73.6% | 0.389 0.340% 37.2% | 0.649
0.92 2.06% 66.3% | 0.460 0.421% 39.3% | 0.632
0.93 2.35% 86.3% | 0.278 0.573% 66.4% | 0.370
0.94 2.31% 66.9% | 0.469 0.823% 57.4% | 0.475
0.95 3.13% 66.6% | 0.521 1.29% 74.9% | 0.328
0.96 3.33% 64.4% | 0.556 1.97% 90.0% | 0.218
0.97 4.42% 89.7% | 0.369 3.30% 91.7% | 0.281
0.98 5.81% 93.2% | 0.417 6.99% 98.7% | 0.433
0.99 8.84% 98.1% | 0.549 18.3% 99.6% 1.10

uncertain and then anomalous when the value of p increases. Meanwhile, it is interesting to
note that the hit rate oscillates at lower p values, and then approaches to 100% as p is raised
nearer to 1.0. Ideally, the hit rate should increase monotonically as well. Its oscillation may
suggest the abnormality of the data. The cost of Fuzzy ART reaches the lowest value at
p = 0.93 with a false positive rate of 2.35% and hit rate of 86.3%. For EFuNN, the lowest

cost is obtained at p = 0.96 while the hit rate is 90% and the false positive rate is as low as

1.97%.

Effectiveness of Varying Learning Rate

The learning rate parameter 8 determines how fast the system should adapt to
new instances in order to accommodate them. A higher value of 8 places more weight to
the new instance when it is assigned to a pattern and less weight to existing members of
the pattern. We evaluated the performance of Fuzzy ART and EFuNN with the Ezp. 1
data stream by widely varying the learning rate. The results are described in Table 4.3.
The vigilance parameter was set to 0.93 for Fuzzy ART and 0.96 for EFulNN respectively
since they provided the lowest cost when the effectiveness of varying vigilance was studied.
Nyatenh was set to 8 and Min oypns was 4.

It is interesting to note that for the Fxp. I dataset, 8 = 0.1 appears to be the
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Table 4.3: The performance of Fuzzy ART and EFuNN with the Exp. 1 data stream.
Results illustrate the impact of varying £ on their performance.

Fuzzy ART EFuNN
B false positive rate ‘ hit rate ‘ cost || false positive rate ‘ hit rate ‘ cost
0.001 0.256% 24.9% | 0.766 2.34% 76.4% | 0.377
0.01 0.675% 54.7% | 0.493 2.20% 88.3% | 0.249
0.1 2.35% 86.3% | 0.278 1.97% 90.0% | 0.218
0.3 3.17% 68.6% | 0.504 1.69% 77.3% | 0.329
0.5 3.44% 71.0% | 0.496 1.64% 72.7% | 0.371
0.7 3.58% 70.1% | 0.513 1.60% 77.4% | 0.322
0.9 3.53% 79.0% | 0.369 1.47% 76.1% | 0.327
1.0 3.23% 67.8% | 0.515 1.55% 74.9% | 0.343

best choice for both Fuzzy ART and EFulNN in terms of the cost. Higher 8 values provide
relatively stable false positive rates and hit rates. For Fuzzy ART, lower § values (8 = 0.01
or 0.001) cause much lower false positive rates as well as lower hit rates. For EFuNN,
however, the false positive rate gets even higher at lower 3 values while the hit rate declines

slightly.

Effectiveness of Varying Nyuicn and Min pynt

Nyateh and Mingqynt are two other important parameters for an adaptive anomaly
detection system. Nyq¢cp represents the delay the system will experience before it evaluates
a newly created uncertain pattern. If it is too long, there is a risk that an anomalous
instance can not be handled in a timely manner. If it is too short, large amount of false
alarms may be generated. Min gyt is the minimum number of members that an uncertain
pattern ought to have before it is changed to normal. We empirically studied the effect
of varying Nyatcn and Min oune on the performance of Fuzzy ART and EFulNN. Different
values of Nyqtcn, and Mincount and the corresponding results are described in Table 4.4. The
vigilance parameter was set to 0.93 for Fuzzy ART and 0.96 for EFuNN, and the learning
rate was 0.1 for both of them.

The results show that Nyuicn = 8 and Minoun: = 4 is a better choice than others
for Fuzzy ART as it provides the lowest cost. Similarly, Nyatcr, = 4 and Minggynt = 2 gives

the best performance for EFuNN. The hit rate of EFulNN is higher and more stable than
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Table 4.4: The performance of Fuzzy ART and EFuNN with the Exp. 1 data stream.
Results illustrate the impact of varying Nyatchn and Mincgypnt on their performance.

Fuzzy ART EFuNN
false false
Nyater | Mineoynt || positive hit cost positive hit cost

rate rate rate rate
4 2 1.711% | 74.2% | 0.360 || 1.53% | 88.9% | 0.203
8 4 2.35% | 86.3% | 0.278 || 1.97% | 90.0% | 0.218
12 4 1.77%% | 77.1% | 0.335 1.65% | 89.4% | 0.205
12 6 4.03% | 70.0% | 0.542 3.66% | 92.9% | 0.291
12 8 6.04% | 95.4% | 0.408 5.04% | 95.7% | 0.345
16 6 2.97% | 61.1% | 0.567 2.95% | 92.9% | 0.248
16 8 4.95% | 72.0% | 0.577 4.19% | 94.3% | 0.309
16 10 6.77% | 84.2% | 0.564 6.41% | 96.3% | 0.422

that of Fuzzy ART as the values of Nyqcn, and Mingou,: change. It indicates that given
the distance measure of EFuNN, the attacks are more distinguishable among the normal

instances.

Static Learning vs. Adaptive Learning

We compared Fuzzy ART and EFuNN with SVM using the Ezp. 2 datasets.
During the training process, Fuzzy ART and EFuNN assumed every pattern was normal
and no instance was discarded. During the testing process, however, the task of Fuzzy ART
and EFulNN became twofold: evolving their structure to accommodate new patterns and
detecting anomalous instances. For simplicity, we set Nyqter, t0 8 and Mincoynt to 4. We
then varied the wvigilance parameter’s value from 0.9 to 0.99, and the learning rate’s value
from 0.01 to 0.9. The parameter settings that provide the lowest cost for Fuzzy ART and
EFuNN are shown in Table 4.5.

The SVM model learned from the one-class training dataset was applied to the
testing dataset. Common types of kernel functions used in SVM include linear, radial basis
and polynomial functions. In our experiments, we found the radial basis kernel performed
better than other kernel functions for one-class learning. The parameter v [93], which
controls the number of support vectors and errors, was determined by cross validation with

the training data sets.
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Table 4.5: The performance of SVM, Fuzzy ART and EFuNN in Ezp. 2.
| | SVM | Fuzzy ART | EFuNN |

P 0.93 0.96
3 0.2 0.01
false positive rate | 12.4% 2.98% 0.884%
hit rate 90.7% 94.0% 85.0%
cost 0.836 0.239 0.203

Table 4.5 compares the performance of SVM, Fuzzy ART and EFuNN. SVM was
able to detect 90% of the attacks in the testing dataset. However, the false positive rate was
as high as 12.4%, which indicates the presence of concept drift between the training dataset
and the testing dataset. Compared to SVM, Fuzzy ART and EFuNN generated significantly
less false alarms. Fuzzy ART was the best in terms of hit rate, whereas EFuNN gave the

lowest cost.

4.4.4 Masquerade Detection with User Profiling Data
Dataset Descriptions

We obtained a set of Windows NT user profiling data from an NSA officer. The
data was collected for 20 users on 21 different hosts in a real-world government agency
environment (a single user might have worked on multiple hosts). During the raw data
collection, a tool was developed to query the Windows NT process table periodically (2
to 3 times per second) and collect all the process information of each user’s login session.
Processes that were not related to user identification were filtered out during the pre-
processing. The processes that correspond to the windows the user activated are of special
interest to us because they represent the programs the user was running. The accumulated
CPU time was calculated for each of these window-associated processes from a user’s login
to logout, which reflects the workload the user performed during this login session. For
processes that have the same process name, their CPU times were added together. Then a
CPU time vector can be formed for each login session, where the value of each entry is the
percentage of CPU time consumed by a unique process during this login session. There are

105 processes contained in this dataset, for example, netscape, explorer, outlook, msoffice
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and so on, while each individual user has his or her own process “vocabulary.”

In addition to the CPU information, we also included the login time in the input
vectors. A user’s login time was categorized as early morning (before 7 AM), morning
(between 7 AM and 12 PM), afternoon (between 12 PM and 6 PM) or evening (later than 6
PM). Since the login time has four possible values, we have four entries in the input vectors
corresponding to the login time. Therefore each login session is encoded as a vector that
contains CPU time percentages consumed by the user as well as four additional entries that
represent the user’s login time.

We selected the 7 users that have the most login sessions to serve as our masquerade
targets. We then used the remaining 13 users as masqueraders and inserted their data into
the data of the 7 users. Two experiments were conducted with the dataset, similar to the
ones with the KDD Cup 1999 dataset. The first experiment (Ezp. 3) was designed to
test our evolving connectionist systems. The masquerade examples randomly drawn from
the 13 users were embedded into the 7 users’ login sessions with a 3% probability. In the
second experiment (Ezp. 4), in order to compare the performance of SVM, Fuzzy ART and
EFuNN, the 7 normal users’ login sessions were split into two parts. The first half of the
login sessions were used for training the learning systems, and the remaining for testing.
Then the masquerade examples were inserted in the testing datasets with a probability of
6%. The values of the masquerade probability were chosen so that there was at least one
masquerade example in each user’s testing dataset for both experiments. Table 4.6 shows
the numbers of the 7 users’ login sessions and the corresponding masquerade examples for
each experiment. The user IDs are user identification numbers inherited from the original
dataset. We built learning models for each of the 7 individual users to see if they could

identify the masquerade examples hiding in their testing datasets.

Results

For Fuzzy ART and EFuNN, when a testing instance is labeled anomalous and a
Level 2 alarm is generated, it is either a true positive (i.e., a hit) if the instance represents
a masquerade example, or a false positive if the instance is the user’s own login session.

We varied wvigilance p’s value from 0.89 to 0.99 and learning rate 3’s values from 0.1 to 1.0,
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Table 4.6: Number of login sessions and the masquerade examples.

Ezxp. 3 Ezp. 4
UserID || self sessions ‘ masquerades || training ‘ testing self sessions ‘ masquerades
1 184 7 92 92 7
2 54 1 27 27 2
4 45 2 22 23 2
6 55 2 27 28 3
7 50 2 25 25 2
14 58 2 29 29 3
19 87 6 43 44 6
| Total || 527 | 22 | 259 | 268 \ 25 \

Table 4.7: The performance of Fuzzy ART and EFuNN in Fxp. 8. Nyatch = 3, Mincount =
2.

Fuzzy ART EFuNN
UserID p B false hits p B false hits
positives positives
1 095|104 5 3 0.94 | 0.2 7 5
2 0.92 | 0.8 6 1 0.91 | 0.8 5 1
4 0.90 | 0.4 1 1 0.89 | 0.2 2 2
6 091 |04 1 2 0.90 | 0.4 0 2
7 0.90 | 0.6 4 1 0.90 | 0.2 0 1
14 0.93 | 0.8 7 1 0.90 | 0.4 2 1
19 091 | 1.0 0 6 0.89 | 1.0 2 6
Total 24 15 18 18
false positive rate = 24/527 = 4.55% | false positive rate = 18/527 = 3.42%
Overall hit rate = 15/22 = 68.2% hit rate = 18/22 = 81.8%
Cost = 0.591 Cost = 0.387

respectively. The choice of Nygicn and Mingoun: depends on the profiled individual user.
For simplicity, we set Nygcn, t0 3 and Min pynt to 2 for all users, which were found to be
an acceptable compromise. For each of the 7 users, we report the parameter settings (p and
B) that give the lowest cost in Table 4.7 for Ezp. 3 and Table 4.8 for Ezp. 4.

In Ezp. 3, both Fuzzy ART and EFuNN were able to model user behavior starting
from an empty set of normal patterns and still recognize the majority of the masquerade
instances, while the false positive rate was under 5%. EFulNN performed slightly better
than Fuzzy ART because EFulNN provided higher hit rate and lower false positive rate and

thus lower overall cost.
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Table 4.8: The performance of SVM, Fuzzy ART and EFulNN in Ezp. 4.

SVM Fuzzy ART EFuNN
UserID false hits p B false hits P B false hits
positives positives positives
1 11 6 0.92 | 1.0 6 7 0.96 | 0.1 2 6
2 7 1 091 | 1.0 0 1 0.90 | 1.0 0 1
4 3 2 0.91 | 0.6 0 2 0.91 | 0.8 0 1
6 3 2 0.89 | 0.8 1 2 0.94 | 0.6 1 3
7 8 2 0.89 | 0.6 1 1 0.90 | 0.6 1 1
14 6 1 091 | 1.0 2 1 091 |04 3 1
19 4 6 091 |04 0 6 0.92 | 0.2 0 6
Total 42 20 10 20 7 19
false positive rate = 42/268 = 15.7% || false positive rate = 10/268 = 3.73% || false positive rate = 7/268 = 2.61%
Overall hit rate = 20/25 = 80.0% hit rate = 20/25 = 80.0% hit rate = 19/25 = 76.0%

Cost = 1.14

Cost = 0.424

Cost = 0.397
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Table 4.8 shows the performance comparison of static learning with SVM and
adaptive learning with Fuzzy ART and EFulNN in Ezp. 4. The parameter v of SVM was
again determined by cross validation with the training data sets. SVM generated 42 false
alarms (15.7% false positive rate) due to the concept drift between the training dataset and
the testing dataset. The false positive rates of Fuzzy ART and EFulNN were significantly
less because they were able to adapt to user behavior changes incrementally, while the hit
rates were comparable to that of SVM. Therefore the overall cost of Fuzzy ART and EFuNN

was largely reduced.

4.5 Discussion

Our approach assumes that the number of normal instances vastly outnumbers
the number of anomalies, and the anomalous activities appear as outliers in the data. This
approach would miss the attacks or masquerades if the underlying assumptions do not
hold. For example, some DoS attacks would not be identified by our adaptive anomaly
detection systems. Nevertheless, our anomaly detection framework can be easily extended
to incorporate signature detection. Previously learned patterns can be labeled in such a way
that certain patterns may generate an alert no matter how frequently they are observed,
while other patterns do not trigger an alarm even if they are rarely seen [103].

With our adaptive anomaly detection framework, it is possible that one can de-
liberately cover his malicious activities by slowly changing his behavior patterns without
triggering a level2 alarm. However, a levell alarm is issued whenever a new pattern is being
formed. It is then the security analyst’s responsibility to identify the user’s intent in order
to distinguish malicious from non-malicious anomalies, which is beyond the scope of this
paper. We also note that in case a continuing abnormal activity occurs, large amount of

levell alarms may be raised and the security analyst can still get overwhelmed.
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4.6 Summary

This chapter has presented a new adaptive anomaly detection framework through
the use of evolving connectionist systems. A subject’s normal behavior is learned in the
online unsupervised mode. The performance of two adaptive anomaly detection systems,
based on Fuzzy ART and EFuNN, was empirically tested with the KDD Cup 1999 network
data and the user profiling data. The experiments have shown that our adaptive anomaly
detection systems are able to adapt to user or network behavior changes while still rec-
ognizing anomalous activities. Compared to the SVM based static learning, the adaptive
anomaly detection methods can significantly reduce the false alarms.

In order to make an adaptive anomaly detection system scalable, it might be nec-
essary to prune or aggregate pattern nodes as the system evolves, which is a significant issue
for future work. Other issues include exploring automated determination of the parameters

and comparing more evolving connectionist systems, such as evolving self-organizing maps.
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Chapter 5

Estimating Generalization
Performance and Training Size

Requirements

5.1 Introduction

In anomaly detection, the following questions are fundamental:

e For a given number of samples, how significant and reliable is the performance (in
terms of classification error) of an anomaly detector? In other words, to what degree
can the normal behavior model learned from the finite training set be applied to yet

unseen data?

e How much training is sufficient in order to achieve certain performance? How will the

accuracy of the anomaly detector improve when trained with additional samples?

These two questions arise in almost every machine learning task. In machine learning,
the problem of estimating how well a learning method can generalize and predict future
data based on the given training examples is called generalization performance analysis,
or statistical stability analysis. Statistical learning theory estimates generalization bounds

through the uniform convergence analysis based on the use of VC dimension [104], or more
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recently, Rademacher Complexity [53][96]. While the convergence estimation provides valu-
able insights in model selection and parameter tuning, the theoretical generalization bounds
or error estimates tend to be rather loose and therefore are of little practical use. Other
empirical methods, such as cross-validation and bootstrapping, usually give good error es-
timates, but are computationally expensive [45].

The closely related problem is how the error rate might decrease as more training
data becomes available. It amounts to developing a model to compute how fast the learning
method “learns” as a function of training dataset size. A natural approach is to build a
learning curve for a given learning method and dataset to fit the empirical error rate as
a function of training size. In particular, the inverse-power-law learning curve, where the
error rate drops according to an inverse power law, appears to be universal and is observed
for many classifiers and types of datasets [14]. In addition to its empirical prevalence, the
inverse-power-law model, in some cases, can be also derived with a statistical mechanics
approach to learning (e.g., [20] [90]).

This chapter addresses these two issues with a particular learning method - Sup-
port Vector Machines (SVM). We introduce an efficient generalization performance estimate
tailored to SVM-based anomaly detection. In anomaly detection, due to the lack of anoma-
lous examples, it is not possible to provide a reliable estimate of the true positive rate, i.e.,
probability of fault detection (also known as hit rate). However, the false positive rate,
i.e., probability of false alarms, is bounded under certain assumptions and can be estimated
efficiently without re-sampling and retraining. We demonstrate that with such estimate, it
is then possible to select different models and different learning parameters, and identify the
changes of normal behavior patterns, i.e., the concept drift problem. Furthermore, we fit
inverse power-law models to construct empirical learning curves for anomaly detection. It
provides the basis for estimating training size requirements and deciding whether a certain
minimum performance can be achieved or not. We test our methodology on a variety of

artificial and real-world datasets.
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5.2 Error estimate of SVM-based anomaly detection

Virtually all machine learning research assumes that the training sample is drawn
from a stationary data source, that is, the distribution of data points and the patterns to
be learned are not changing with time. SVM is no exception. Given a set of training ex-
amples generated independently and identically distributed from an unknown distribution,
the generalization error bound for SVM-based anomaly detection can be derived through
the use of VC dimension [93] or Rademacher Complexity [96]. Although these error bounds
set a theoretical limit on the probability that a new test object drawn from the same un-
derlying distribution lies outside the optimal hypersphere, they are very loose and thus not
useful in practice. Joachims [45] proposed the so-called {a-estimator for the generalization
performance of a standard SVM classifier. This is still a loose estimate and not directly
applicable to SVM-based anomaly detection.

Here we introduce a simple and effective error estimate tailored to the SVM-based
anomaly detection problem, which was first briefly explored in [99]. The idea is based on
the leave-one-out (loo) estimation. The loo estimator excludes one sample from a training
dataset of size IV, constructs a classifier using the remaining N — 1 samples, and then tests
the classifier on the sample left out. This procedure is repeated for all training examples.
The total number of misclassifications divided by N is the loo estimate of the generalization
error. Lunts and Brailovsky [73] showed that the loo estimator gives an almost unbiased
estimate of the expected error. However, the computational cost of the loo estimator is high
as the learner is invoked N times. This is prohibitively expensive for large N or complicated
learning methods. To reduce the running time, a common practice is to randomly partition
the training set into k parts and exclude one of the k samples each time, a scheme known as
k-fold cross validation. Cross validation is probably the most popular method for estimating
the generalization performance of a classifier, although it has a larger bias than loo. Loo,
esentially a N-fold cross validation, is approximately unbiased but has larger variance.

The details on SVM-based anomaly detection are described in Appendix A. The
key idea of the error estimate for SVM-based anomaly detection is to count the number

of training examples that can cause an error in leave-one-out testing. For a given training

60



Figure 5.1: A two-dimensional sphere (solid line) containing most of the data. Enclosed in
a circle are four support vectors on the boundary.

set S of N examples, the resulting hypersphere divides the N objects into three distinct

regions as shown in Figure 5.1:
e Region A, the interior of the hypersphere. For data points lying in this region, a; = 0.

e Region B, the boundary of the hypersphere. Data points on the hypersphere are

unbounded support vectors with 0 < a; < 1/vN.

e Region C, the space outside the hypersphere. Data points lying in this region are

bounded support vectors with the «; value of 1/vN.

Before we examine data points in these regions in turn for the leave-one-out esti-
mation, the concept of essential support vectors [104] needs to be introduced. Although the
optimal hypersphere is unique, the expansion of the center of the hypersphere ¢ = »_ a;x; is
not unique. There might be more support vectors than are necessary. The support vectors
that appear in all possible expansions are essential support vectors. While it is not trivial
to identify all the essential support vectors for a practical problem, they play an important
role in determining the loo error. Here we assume N is large enough and vN ~ v(N — 1)
so that the upper bound on the number of outliers and the lower bound on the number of

support vectors remain the same when one training example is left out.
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1. Region A: since the internal points have zero «; value, they do not make any contri-
bution in defining the center and radius of the optimal hypersphere. When a point
lying inside the hypersphere is left out of training, the same hypersphere solution will
be obtained when training with the remaining N — 1 examples. During testing this
object will therefore still fall inside the hypersphere. Thus it does not produce an

error for the loo estimation.

2. Region B: When a non-essential support vector on the boundary is excluded during
the loo process, the same hypersphere is achieved using the remaining support vectors
in the expansion. Therefore it will be recognized correctly and no loo error will be
generated. When an essential support vector on the boundary is left out, however, a
smaller hypersphere is obtained. This essential support vector, lying outside the new

hypersphere, will cause a loo error.

3. Region C: the bounded support vectors are already outside the hypersphere. When
they are excluded from training, no matter whether they are essential support vectors

or not, they will fall outside the hypersphere again and thus cause a loo error.

In summary, the leave-one-out error is the sum of the number of essential support vectors

on the boundary (Nesy) and the number of bounded support vectors (Nysy ) divided by N:

Nesv + Npsy < Ngv

Eloo: N =N

where Ngy is the number of all support vectors. The inequality holds when not all support
vectors on the boundary are essential support vectors. Since the loo error is the unbiased

estimate of the expected error, we have:

Ngy
E|E < —.
[Error] < N

The derivation above shows that the fraction of support vectors is a clear indication of
the generalization performance of the SVM-based anomaly detection. This error estimate
does not require expensive re-sampling and retraining and is available immediately after

the hypersphere is found.
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The generalization error can also be interpreted as an estimate of the false positive
rate. Therefore, for a given training data set of normal examples, the expected false positive
rate for future unseen data is no more than the fraction of support vectors, provided that the
testing data is generated from the same underlying distribution as the training data. The
error estimate can guide the model selection and learning parameter tuning. In addition, it
can be used to detect concept drift when there is a large discrepancy between the expected

false positive rate and the actual false positive rate.

5.3 learning curve fitting

The generalization performance analysis addresses the question of how confident
we are of our error estimate for a given training set. Yet it does not answer the question of
how the error rate drops as the training size increases. Learning curves address this latter
problem. They estimate the empirical error rate as a function of training set size for a given
classifier and dataset. A learning curve is usually well characterized by an inverse power
law:

e(n) =an™%+b.

Where e(n) is the expected error rate for training size n, a is the learning rate, « is the
decay rate, and the Bayes error b is the minimum error rate achievable [19]. The parameter
values of a, o and b will change for a particular learning method and dataset. According
to this model, at the training size increases, the error rate will asymptotically approach
b. The inverse-power-law model has been successfully used to fit learning curves in many
applications (e.g., [85]).

Anomaly detectors usually suffer from high false positive rate when normal behav-
ior varies widely. For a system that has less regular normal behavior, more training data
is required in order to reduce false alarms and achieve certain performance. The inverse-
power-law learning curve fitting provides the basis for estimating training size requirements
and determining whether a minimum false positive rate can be obtained.

Fitting a learning curve amounts to the following optimization problem:
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subject to a,a,b > 0. It can be solved with standard nonlinear programming techniques.
e(nj) can be estimated using the efficient technique shown in Section III or more complicated

estimates such as cross validation.

5.4 Experiments

In this section, we evaluate our error estimate and fit learning curves for artificial
and real-world datasets. In our research, we used LIBSVM (version 2.6) [13], an integrated

tool for SVM classification and regression as well as one-class SVM.

5.4.1 Artificial data

We used pseudo random numbers to generate normal Gaussian datasets and a
mixture of three outlier groups. The training set consists of 30000 three-dimensional data

points, generated with a Gaussian probability density p(y|u, A), where p = (0,0,0) and

1.2 0 0
A= 0 10
0 0 1

The testing dataset contains 30000 normal instances generated from the same distribution

and 10000 outliers generated by a Gaussian mixture:

p(y) = c1p(y|u1, M) + cop(ylpe, A2) + e3p(y|ps, As),

where ¢; = 0.3, c2 = 0.3, c3 = 0.4, p1 = (3.5,0,0), p2 = (3.5,2,0), pus = (9,—3,0), and
A1 = Ay = A3 = 0.2] (I is the identity matrix).

Gaussian kernel function was used for this dataset. -y, the parameter of the Gaus-
sian kernel, was set to 0.001. We varied v’s value to observe the effectiveness of the error
estimate as well as the influence of v on the performance of the anomaly detector. Figure
5.2(a) compares the fraction of support vectors as the error estimate, the 10-fold cross val-

idation error on the training set and the false positive rate on the testing set when varying
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v from 0.001 to 0.1. The results show that these three quantities coincide at every different
value of v. As v increases, the volume of the hypersphere shrinks in order to accommodate
more outliers in the training set. We can see that the error rate gets higher for both the
training and testing sets. This is not surprising as the training and testing datasets are
generated from the same underlying distribution. Meanwhile, Figure 5.2(b) shows the true
positive rate on the testing set, i.e., the outlier detection rate, improves, as expected, when

v value increases and the hypersphere gets smaller.

0.12

N

@ error estimate
—= 10-fold CV
false positive rate

o
©
\

fraction

True positive rate
o o
N o
1 !

o
o

o

0.001 0.005 0.01 0.05 0.1

v

0.001 0.005 0.01 0.05 0.1

(2) (b)

Figure 5.2: Experimental results for various v values on the artificial data. (a) Comparison
of error estimate, 10-fold cross validation error and false positive rate on the testing set.
(b) True positive rate vs. v.

5.4.2 Masquerade data

We chose a UNIX command dataset that is often used for masquerade studies
[94] [80] [88]. The data, available at http://www.schonlau.net/, consists of 50 users’ UNIX
command sequences. Each individual user’s data has 150 blocks of 100 commands each.
The first 50 blocks are noise-free and used for training. The testing set, starting from
block 51 to block 150, may contain command blocks from masqueraders. Many methods
have been tested on this popular dataset for masquerade detection. The emphasis of our
experiments, however, is on demonstrating the effectiveness of the error estimate.

We selected the four users that have the most masquerade blocks: User 9, User 24,

User 42 and User 43. The k-spectrum kernel [66] was used to map the command sequences

65



into the feature space (with £ = 2). Figure 5.3 compares the error estimate, i.e., the fraction
of support vectors, the leave-one-out error and false positive rate on the testing data when
v varies from 0.02 to 0.2. We can see that the error estimate is equal to the loo error in
most cases, and only slightly larger than the loo error for the rest. This shows that the
fraction of support vectors effectively predicts the loo error without expensive retraining.
As v increases, the error estimate and the loo error get higher. The similar pattern can be
seen with the false positive rate on the testing set. It is interesting to note, however, that
the testing false positive rate is much higher than the training error for User 9, User 42 and
User 43. The large discrepancy indicates the drift of user command patterns. This suggests
that the error estimate can also be used to detect concept drift in anomaly detection. The

true positive rate, i.e., the masquerade detection rate, is always 100% for these four users.

5.4.3 KDD data

We also conducted experiments on a subset of the KDD Cup 1999 [22] data
prepared for network intrusion detection. The 1999 KDD Cup network traffic data are
connection-based. Each data record, described by 7 symbolic attributes and 34 continuous
attributes, corresponds to a TCP/IP connection between two IP addresses. In addition, a
label is provided indicating whether the record is normal or it belongs one of the four attack
types (Probe, DoS, U2R and R2L). The symbolic attributes that have two possible values
(e.g., logged_in) were represented by a binary entry with the value of 0 or 1. For symbolic
attributes that have more than two possible categorical values, we used multiple entries
to encode them in the vector representation, one entry for each possible value. The entry
corresponding to the category value has a value of 1 while the other entries are set to 0. The
attribute service has 41 types, and we further classified them into {http, smtp, ftp, ftp_data,
others} to reduce the vector dimensions. The resulting feature vectors have a total of 57
dimensions. Since different continuous attributes were measured on very different scales,
the effect of some attributes might be completely dwarfed by others that have larger scales.
Therefore we scaled the attributes to the range of [0, 1].

We formed a subset of the original dataset consisting of 97277 normal connections

and 9199 attacks by randomly sampling. We used 50% of the normal instances for training.
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Figure 5.3: Comparison of error estimate, leave-one-out error and false positive rate on
testing data. (a) User 9; (b) User 24; (c) User 42; (d) User 43.



The testing set consists of the remaining normal examples and all the attacks.

Gaussian kernel function was used for this dataset. We varied the values of v
and v to observe their influence on the performance. Table 5.1 and Figure 5.4 present the
results when  varies from 0.001 to 0.1 and v is set to 0.001. As can be seen in Figure
5.4(a), the error estimate and the 5-fold cross validation error are close to each other with
minor difference. This is reasonable since the 5-fold cross validation is subject to large
variance. Note that 7 represents the inverse of the Gaussian kernel width. With increasing
v, the Gaussian kernel width gets smaller and the boundary of the hypersphere becomes less
smooth [99]. As a result, we can see a slight increase of the number of support vectors and
thus the error estimate. Meanwhile, the false negative rate, i.e., the probability of missing
intrusions, drops slightly. We can also see that the false positive rate on the testing set

is one magnitude larger than the expected error on the training set, indicating significant

concept drift between the training and testing datasets.

Table 5.1: Experimental results for various 7 values on the KDD data (v = 0.001).

‘ ¥ ‘ Ngy ‘ error estimate ‘ 5-fold CV error H false positive rate ‘ false negative rate ‘
0.0001 | 51 0.105% 0.15% 8.543% 18.643%
0.001 52 0.107% 0.115% 9.145% 17.38%
0.01 53 0.109% 0.105% 9.38% 16.13%
0.1 60 0.123% 0.152% 8.62% 14.523%

We also varied v’s value from 0.0001 to 0.1 while v was set to 0.01. As shown
in Table 5.2, v has a much stronger influence on the performance of the anomaly detector
than . As v increases, the intrusion detection rate improves significantly at the cost of
increasing false alarms. However, the error estimate remains a close estimate of the cross

validation error.

Table 5.2: Experimental results for various v values on the KDD data (y = 0.01).

‘ v ‘ Ngy ‘ error estimate ‘ 5-fold CV error H false positive rate ‘ false negative ‘
0.0001 | 12 0.02467% 0.0247% 1.057% 30.49%
0.001 53 0.109% 0.105% 9.38% 16.13%
0.01 490 1.007% 0.995% 14.08% 10.26%

0.1 4866 10% 9.25% 27.8% 0.75%
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Figure 5.4: Experimental results for various -y values on the KDD data (v = 0.001). (a)
Comparison of error estimate and 5-fold cross validation error on the training set. (b) False

positive rate and false negative rate on the testing set.

5.4.4 Learning curve fitting

We used the same masquerade dataset to fit learning curves. We randomly picked

two users that do not have masquerade command blocks: User 5 and User 6. The training

size was increased gradually from 50 to 150. For each training size, v’s value was varied from

0.01 to 0.2 and the value that gave the lowest error estimate was chosen. The spectrum

kernel was used again with £ = 2. Table 5.3 presents the error estimates for different

training sizes.

Table 5.3: Errors for various training sizes on the masquerade data.

training size H User 5 error estimate H User 6 error estimate

50
70
90
110
130
150

26%
18.57%
15.56%
14.54%
12.31%
10.67%

10%
8.57%
4.44%
5.45%
4.62%

4%

Figure 5.5 shows the learning curves for User 5 and User 6. The estimated inverse-

power-law models for User 5 and User 6 are:

User5 : Error(n) = 5.3642n~%780 4 0.0003,
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Figure 5.5: Learning curves for masquerade data. (a) User 5; (b) User 6.

User6 : Error(n) = 3.0247n %892 4 0.00058.

According to these learning curve functions, in order to achieve the 1% false positive rate,
an often used target for anomaly detectors, the training size has to be 3280 and 654 for
User 5 and User 6, respectively. This indicates User 6’s behavior is more regular and easier

to predict, and therefore the anomaly detector can reach 1% false positive rate with much

less training examples.

5.5 Summary

In this chapter, we presented a new and efficient error estimate for support vector
machine based anomaly detection systems. The fraction of support vectors sets the upper
bound for the generalization performance, i.e., the expected false positive rate for a given
training dataset. The effective error estimate can guide the model selection and learning
parameter tuning as well as detect concept drift of normal behavior patterns. Furthermore,
we proposed to use inverse power law to model learning curves. This provides the basis for
estimating the training size requirements for anomaly detection. We also demonstrated the

effectiveness of these estimates with various artificial and real-world data.
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In addition to more comprehensive experiments and evaluations, one direction
of future work is to study how to quantitatively characterize concept drift with the error
estimate and incorporate it into an adaptive anomaly detector that handles concept drift.
Another direction is to extend our estimates with learning methods other than support

vector machines.



Chapter 6

Intrusion Detection and Response:

A Game Theoretic Perspective

6.1 Introduction

In May 2003, the Gartner Information Security Hype Cycle report declared that
intrusion detection systems (IDSes) are “a market failure” and will be obsolete by 2005 due
to the problems such as excessive false positives and false negatives, high operational cost
and taxing incident-response process [36]. The report has stirred fierce debate within the
IDS vendor as well as research communities. While it is debatable whether the Gartner’s
prediction for IDS is short-sighted or not, it is clear that cost-effectiveness will be one of
the deciding factors in IDS’ future.

IDS began in the 1980s as a promising paradigm for detecting hackers and ma-
licious insiders that exploit security vulnerabilities or flaws in computer systems [82]. For
the last two decades, most research efforts have been devoted to improve the technical ef-
fectiveness of IDS. That is, to what degree does an IDS detect and prevent intrusions into
the target system, and how good is it at reducing false positives? In practice, however, no
IDS will ever be 100% accurate in detecting attacks. False positives and false negatives will
be inevitably produced. Moreover, the reduction of one type of error (false positive or false

negative) is usually accompanied by an increase in the other type.
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Cost-effectiveness is an important, yet often overlooked aspect of IDS. When an
organization makes an investment decision on a security mechanism such as IDS, risk assess-
ment and cost-benefit analysis is essential. This includes assessment of the organization’s
assets and values, identification of threats and vulnerabilities, cost-benefit trade-off evalu-
ation, and so on. The major cost factors that ought to be taken into consideration are the
operational cost of IDS, the expected loss due to intrusions and the cost of manual or auto-
matic response to an intrusion [61]. Even when the adoption of IDS technology is justifiable,
the IDS operator still faces the challenge of employing the IDS properly and determining
the best response strategies against various types of attacks in order to minimize the cost
of maintaining the IDS while protecting the system assets.

Our research aims to provide a game theoretic methodology for analysis and design
of IDS and improve the effectiveness of IDS technology by modeling the interaction between
IDS and attackers in a game playing context. Game theory offers a natural setup for
adversarial situations, where multiple players with different objectives compete and interact
with each other. As a powerful strategic decision making tool, game theory has been applied
in many fields, including economics, political science, etc. [31]. The game theoretic modeling
of security systems such as IDS makes it possible to bring the full spectrum of well-developed
game theory techniques to bear on the information security problems.

In this chapter, we use a simple two-person, nonzero-sum game to model and
analyze the IDS and attacker behavior in a general environment. Attacking and defending
of the protected system are formalized in terms of a set of strategies for attacker and
IDS, respectively, whereas risk and objectives are formalized in terms of payoff (or utility)
functions. Each player strives to maximize his payoff function by selecting a feasible strategy.
The solutions based on the game theoretic analysis naturally integrate the cost-effectiveness
and technical performance trade-off of the IDS and identify the “best” defense and attack
strategies. Specifically, our results provide valuable insights in answering the following

fundamental questions:

e Under what condition would an attack most likely occur?

e When is an IDS useful? When does its use become counterproductive?
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e When an IDS is deemed useful, what should be its technical specification?

e What’s the best response strategy when the IDS raises an alarm? Ignore it or respond

to it?

e If the IDS operator can only respond to a subset of the alarms, what percentage is

optimal?

The rest of the chapter is organized as follows. In Section 2 we review some related
work. Section 3 is a brief introduction to game theory. Section 4 describes details of our
game model. In Section 5, we discuss the extensions of our method as well as the challenges

of game theoretic modeling of security systems. Section 6 presents conclusions.

6.2 Related Work

The economics of information security is an emerging and growing research area
[78] [89]. For example, Gordon and Loeb [34] presented an economic model that deter-
mines the optimal amount to invest to protect a given set of information assets. Theagwara
[42] examined the effect of implementation methods, management methods and intrusion
detection policy on the return of investment.

The application of game theory to the domain of computer security has recently
been a topic of interest. Lye and Wing [74] constructed a stochastic game to model the
interactions between an attacker and the administrator in a typical network environment.
Liu and Zang [71] presented a general incentive-based method to model attacker’s intent,
objectives and strategies (AIOS) and employed game theoretic techniques to infer AIOS.
Different game models (stochastic or Bayesian games) were proposed based on the accu-
racy of intrusion detection and the correlation among attack actions. Alpcan and Basar [2]
argued that game theory can provide the much needed mathematical framework for anal-
ysis, decision and control processes for information security and intrusion detection. They
designed a security warning system for distributed IDS using Shapley values. A two-person
finite game was used to model security attacks in a multiple sensor environment. Cavusoglu

and Raghunathan [12] took a game theoretic approach to determine the optimal configura-
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tion (detection and false positive rates) of an IDS and compared it with the decision theory
approach. While the game models in this paper are similar to those in [2] and [12], our focus
is on the modeling of general IDS and its insights in IDS’ cost-effectiveness. In addition,
our incentive-based payoff functions more accurately represent the interactions between the
IDS and attacker.

Decision theory is often employed to facilitate risk management and cost-benefit
analysis [32] [41]. For example, Gafiney and Ulvila [32] used a decision analysis to evaluate
and configure IDS. Decision theory assigns prior probabilities (usually fixed and exogenous)
to handle the uncertainty of the environment (e.g., the prior probability of an intrusion).
As pointed out in [12], decision theory based approaches are inadequate for IDS problems
because they don’t allow the defense system’s decisions to influence the attacker’s behavior.
In contrast, game theory brings the attacker into the model and thus makes itself more

attractive for handling the strategic interdependence between the IDS and attacker.

6.3 Review of Game Theory

A game is a formal representation of a situation in which a number of individuals
with different objectives compete and interact with each other. In general, a game consists

of the following elements:
e Players: who are involved?

o Rules: who moves when? What do they know when they move? What can they do

(i.e., what strategies do they have)?

o Qutcomes: for each possible set of actions by the players, what is the outcome of the

game?
o Payoffs: what are the players’ utility functions over the possible outcomes?

A classic example is the game of Matching Pennies. In this game, player 1 puts a
penny down, either heads up or tails up. Player 2, not knowing player 1’s choice, also puts

a penny down. If the two pennies match ( either both heads up or both tails up), player
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Figure 6.1: Extensive form for Matching Pennies.

1 pays 1 dollar to player 2. Otherwise, player 2 pays 1 dollar to player 1. The Matching
Pennies game can be represented in the eztensive form depicted in Figure 6.1. Due to its
treelike structure, the extensive form is also known as a game tree. Matching Pennies is a
two-player zero-sum game, in which case the sum of the payoffs is always zero. In general,
however, most games of interest are non-zero-sum.

A central concept of game theory is the notion of a player’s strategy. A strategy
is a complete contingent plan, or decision rule, that specifies how the player will act in
every possible circumstance in which he might be called upon to move. For example, in
Matching Pennies, both players have two possible strategies: play heads (H) or tails (T).
Then the game can be represented in terms of strategies and their associated payoffs. This
representation, often depicted as a matrix, is known as the normal (or strategic form).
The normal form of Matching Pennies is presented in Figure 6.2. Each row of the matrix
represents a strategy of player 1, and each column a strategy of player 2. Within each cell,
the first entry is player 1’s payoff for the corresponding strategy profile; the second is player
2’s.

Up to this point, we have assumed that players make their strategic decisions with
certainty. However, a player could randomize when faced with a choice. We now call the
deterministic strategy a pure strategy. By contrast, a mized strategy for a player is simply a

probability distribution over his pure strategies. For example, a mixed strategy for player 1
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Figure 6.2: Normal form of Matching Pennies.

L R

5,1 6,2
M 8, 4 3,6
D 9,6 2,8

Figure 6.3: Game example.

in Matching Pennies is to play heads with the probability of 30%, and tails of 70%, instead
of playing heads or tails all the time.

It is not so obvious to predict how each player should play Matching Pennies in
order to maximize his own payoff. Consider the game illustrated in Figure 6.3 instead.
In this game, player 1 has three pure strategies (U, M and D) and player 2 has two pure
strategies (L and R). Note that, no matter how player 1 plays, R gives player 2 a strictly
higher payoff than L does. In formal language, strategy L is strictly dominated. Thus, a
“rational” player 2, who uses only those strategies that are best responses to some beliefs he
might have about the strategies of his opponent, should not play L. Furthermore, if player
1 knows that player 2 will not play L, then U is a better choice than M or D. This process
of elimination is called iterated dominance. It reduces the strategy sets of the players and
thus simplifies the game.

Unfortunately, most games (e.g., Matching Pennies) are not solvable by iterated
dominance. The Nash equilibrium solution provides the optimal response to other players’
strategies for each player. In a Nash equilibrium, none of the players has an incentive to
deviate unilaterally from the equilibrium as long as the other players don’t deviate. It

can be proved that every finite game has a mixed strategy Nash Equilibrium. Solving the
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Nash Equilibrium for a 2 x 2 matrix game is trivial, although it can be costly for higher-
dimensional matrix games [31]. The Nash Equilibrium for Matching Pennies is the mixed
strategy in which each player randomizes between his two pure strategies, assigning equal
probability to each.

So far we have assumed that players know all relevant information about each
other, including the structure of the game and payoffs that each receives. Such games
are known as games of complete information. However, this assumption may be invalid in
practice. How to weaken or entirely dispense with this assumption and solve games of in-
complete information has been a challenging research topic in game theory. One widely used
approach is to transform incomplete information about players into imperfect information

about nature’s moves. A game of this sort is known as a Bayesian game.

6.4 Game Theoretic Modeling

We use a two-person non-zero-sum game model to formulate the strategic in-
terdependence between a general IDS and an attacker. The IDS can be host-based or
network-based in an organizational environment !. The organization can range from small
enterprises to government agencies. Intrusions are identified through anomaly detection,
misuse detection or hybrid techniques. The attacker can be a skillful intruder from outside,
a malicious insider, or even a script kiddie.

Before we delve into the game modeling details, we shall introduce the parameters

and identify the cost and payoff factors related to both players of the game.

6.4.1 Parameters and Cost/Payoff Factors

Table 6.1 summarizes the parameters used in our models. The parameters are
always positive.

The cost and payoff factors associated with an IDS are:

e Operational cost (OC). This includes the cost of purchasing the IDS, the amount

'Our model can be easily extended to the case when there are multiple IDSes within the organization.
The game formulation will remain the same.
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Table 6.1: List of parameters.

‘ notation H description

false alarm rate, the probability of an alarm, given no intrusion

false positive rate, the probability of no alarm, given an intrusion
intrusion detection rate, § = 1 —
probability of an attacker conducting an attack

D || >R

probability of responding to an alarm

ocC IDS operational cost

DC damage cost of an attack

RC IDS response cost

RD reward (i.e., payoff) of IDS for responding to an attack

LC attacker’s cost of launching an attack
PC penalty to the attacker when the attack is detected
BA benefit to the attacker when the attack is undetected

of time and computing resources needed to process the audit data stream and the
personnel cost involved in administering and maintaining the IDS. Considering the
voluminous audit data an IDS processes, the average operational cost for each audit

event (the unit of analysis) should be nominal.

Damage cost (DC'), the amount of damage to the organization by an attack when IDS
is not available or ineffective. It can be measured by the degradation of a set of security
measurements associated with the organization’s security metrics [71]. Different types
of attacks can incur various levels of damage. Here we use DC to represent the

expected damage cost by a generic attack.

Response cost (RC), the cost of acting upon an IDS alarm. Depending on the type of
response mechanisms being used, the response cost includes the computing resources
for terminating the offending connection or session, the downtime needed to repair

and patch the computer systems, the labor cost of the response team, and so on.

RD, the reward to the organization for responding to an attack. It can be measured
by the improvement of the organization’s security metrics after the response to the
attack. In other words, RD is the potential damage cost caused by the attack if it

went unnoticed otherwise 2.

For organizations such as law enforcement agencies, there is additional value for catching the attackers.
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Similarly, from an attacker’s point of view, the cost and payoff factors include:

e LC, the cost for an attacker to launch an attack. It is the amount of time and resources
needed to conduct the attack, which includes searching for system vulnerabilities,
designing malicious code to exploit the vulnerabilities, etc.. It is reasonable for a

vigilant security officer to assume that the cost of attack LC is small.

e Penalty cost (PC).This characterizes the risk for the attacker to be traced-back and
punished. Quantitatively, it is the product of the probability of the attacker being

held accountable and the penalty to the attacker when he is caught.

e BA, the benefit to the attacker when the attack is undetected. We use the attacker’s
incentive, quantified as the organization’s damage cost DC, to represent BA (i.e.,
BA = DC(), although it may not be the benefit he receives directly from the attack

[71].

In this section we assume the values of the parameters are common knowledge
known to both players of the game. Section 5 shows how we can weaken this assumption
and design the game of incomplete information. We further assume that OC and LC are

much less than the other cost and payoff factors.

6.4.2 1IDS vs. Attacker

The extensive form of the game is illustrated in Figure 6.4. The attacker’s strategy
is either to attack or not to attack the targeted organization. Accordingly, the organization
may simply choose to have or not to have an IDS to defend against the attacker. Due
to the imperfect technical performance of the IDS, it is possible that the IDS can raise a
false alarm when there is no attack or generate no alarm when an attack is occurring. The
corresponding probabilities and payoffs are shown in the shaded area in Figure 6.4. in this
game we assume the IDS operator responds to every alarm the IDS generates (i.e., p = 1).

Figure 6.5 presents the normal form of the game. The payoffs for both players
are determined as follows. If the attacker decides not to commit an attack, he receives no

payoff. In contrast, the the organization has to pay for the operational cost (OC) along
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Figure 6.4: Extensive form for Game A.
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Figure 6.5: Normal form of Game A.

with the cost of false alarms («RC) if an IDS is employed. When the attacker conducts an
attack while the IDS is not in place or does not generate an alarm, the organization’s loss
is DC, whereas the attacker’s payoff is the difference between BA and LC, which is the
same as DC — LC. If the IDS successfully detects an attack, the organization gains RD at
the cost of RC and OC. Meanwhile, the attacker bears the expected penalty cost PC' in
addition to LC 3. The organization’s expected payoffs when having an IDS is determined
by taking the sum of products of probabilities and payoffs for two scenarios (alarm or no
alarm).

We shall consider the attacker’s strategies first. As shown in Figure 6.5, the
attacker’s payoff A1o = DC — LC is greater than Ags = 0, based on our assumption that

LC <« DC. “Attack” would be the attacker’s dominant strategy if Aq; is also greater than

30ur model can be extended to accommodate the case in which the attack is partially in progress when
the IDS raises an alarm and the organization only recovers a portion of the damage.



Ao = 0. That is,
Ay = BDC - (1-pB)PC - LC

1R

BDC — (1 — B)PC

> 0
This is equivalent to
DC 1-p
PC /3 ’
or
DC 5
PC -4

We define A = DC/PC, which essentially represents the benefit-to-risk ratio for the at-

tacker.

Remark 1 If the attacker’s benefit-to-risk ratio A is greater than d/(1 — §), “attack” is

bl

his dominant strategy. In other words, “no attack” is the strictly dominated strategy. A
rational attacker would always choose to attack the organization and thus maximize his

payoff regardless of the organization’s decision.

This result is not surprising. Intuitively, the greater potential damage cost or the
lower risk would motivate the attacker more to commit the attack. On the other hand, the
higher the attack detection rate, the more risk to the attacker and the less likely the attack
occurring. This is illustrated in Figure 6.6. For a fixed A value, an IDS with the intrusion
detection rate less than dypreshora = A/(1+A) (A > %5 is equivalent to § < 1+)\) would not
play a deterrent role for the attacker at all. For example, when A = 10, ¢preshorg = 0.91.
Even when A = 5, dtpreshoid is still as high as 0.83. On the other hand, for a fixed § value,
a malicious attacker who wants to maximize his payoff would rather conduct an attack
with A > /(1 — ¢) than do nothing! This implies that the effective way to discourage the
occurrence of an attack is to not only improve the attack detection rate but also increase
the punishment for the attackers. In addition, it is interesting to note that false alarms
cost nothing to the attacker. Therefore o does not come into play when determining the
attacker’s dominant strategy.

We next examine the organization’s strategies. The negative By is always less

than Boo. If By is also less than Bjs, the organization’s dominant strategy would be “no
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Figure 6.6: Attacker’s dominant strategy is “attack” when A > 6/(1 — §).

IDS”. Therefore we have
By —B;; = —DC-(1-p8)(RD—-RC)+8DC+0C
(1-p5)(RC —DC — RD)

1R

> 0
Clearly, Bj2 is greater than By; if and only if RC' — DC — RD > 0 (OC is relatively

small and neglected and  is always less than 1).

Remark 2 Having an IDS becomes counterproductive when RC > DC + RD. Tt is more

cost-effective for the organization not to use the IDS due to its high response cost.

Note that RC is compared to the sum of DC and RD (instead of DC alone). As
long as RC < DC + RD, it is beneficial for the organization to employ an IDS. A similar

analysis of the IDS’ decisions upon an alarm (respond or not respond) would reveal the

following;:

Remark 3 When an IDS is deployed and it generates an alarm, it is more cost-effective to

ignore the alarm and not to respond to it if RC > DC + RD.

In case there is no dominant pure strategy for neither player, we need to examine

the Nash Equilibrium of the game. Let 9 and 1 — 9 be the probabilities for attacker’s
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strategies “attack” and “no attack”, respectively. Also let ¢ and 1 — ¢ be the probabilities

for strategies “having IDS” and “no IDS” of the organization. In practice, an probability

distribution over an organization’s pure strategies can be interpreted as the extent to which

the organization needs an IDS or the percentage of the time that the IDS should be available.
The Nash Equilibrium solution of the game is as follows:

aRC
§(DC + RD — RC) + aRC"’
. DC A
T = 5PC+DC) " 51+

The organization’s mixed strategy (¢*,1—g*) is the best response to the attacker’s strategies.

P =

In fact, if the IDS is available with the probability of ¢*, the attacker’s expected payoff will
be 0, whether he attacks or not. Similarly, if the probability for the attacker to attack the

organization is 9*, the organization’s expected cost is

aDCRC

V= DG+ RD - RC) + aRC’

whatever its defense strategy is.

Remark 4 When an IDS is useful, the organization’s best response to the attacker’s strate-
gies is to employ the IDS with the probability of A\/[6(1 + A)]. This way, the attacker’s

expected payoff will be 0, whatever he does.

It may seem counter-intuitive that ¢* is proportional to 1/§ and it increases
monotonically with increasing A. However, § is expected to have a value greater than
Othreshold = A/(1 + A). The higher benefit-to-risk ratio for the attacker, the better the IDS
ought to be in terms of intrusion detection rate, and the more it is inclined for the organi-
zation to have the IDS in order to catch the attacker and reduce his payoff. On the other
hand, 9* increases with increasing false alarm cost of the IDS or decreasing ¢, which implies
an attack is more likely to happen if the IDS is less accurate.

Alternatively, ¢ can be interpreted as the probability of responding to an alarm

when an IDS is employed (i.e., p). Therefore the optimal value of p is ¢*.
Remark 5 The optimal probability of responding to an IDS alarm is A/[§(1 + A)].

Table 6.2 lists a set of numerical examples of A, §, Spreshota and g* values.
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Table 6.2: Numerical examples.
‘ A ‘ 4 H Othreshold = A/(1 + )‘) ‘ q = A/[é(l + A)] ‘

0.1 | 80% 9.1% 11.4%
1 | 80% 50% 62.5%

85% 83.3% 98.0%

10 | 95% 90.9% 95.7%

6.5 Discussion

The game theoretic methodology of cost-benefit analysis is not limited to IDS.
In fact, it can be easily extended to any security mechanism. It is important to bring
adversarial attackers into the security models. The game theoretic formulation makes it
possible to understand an attacker’s intent and strategies from the attacker’s perspective,
which has been an often neglected facet of computer security research.

Our game model assumes complete information of the IDS and attackers. However,
this assumption is somewhat unrealistic in practice. In particular, it is very difficult to
estimate an attacker’s payoff values. Significant research effort is needed to address the
issue of accurate quantification of the attacker’s payoff functions. Nevertheless, a qualitative
game theoretic analysis can still bring unique and valuable insights to the understanding of
the attacker’s behavior and the decision making of security systems. Meanwhile, Bayesian
games can be used to accommodate the uncertainty of the payoffs and handle the case
of incomplete information. For instance, an attacker can be classified into three types: a
skillful intruder from outside, a malicious insider, or a script kiddie. A prior probability
is assigned to each type and the payoff values are identified for each sub-game associated
with each type. Then the transformed game can be analyzed with standard techniques.
Similarly, different attack types, such as denial of services, port scanning, masquerading,
and so on, can be incorporated into the game model as well.

Finally, the interaction between attackers and security systems can be viewed as
a repeated game. Both players can improve with the experience of playing the repeated
games. How to incorporate game theory with learning is another important issue for our

future work.
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6.6 Summary

Cost-effectiveness is an important aspect of intrusion detection systems. In this
chapter, we have presented a game theoretic methodology for cost-benefit analysis and
design of IDS. A simple two-person game was used to model the strategic interdependence
between a general IDS and an attacker. The solutions based on the game theoretic analysis
naturally integrate the cost-effectiveness and technical performance tradeoff of the IDS and
provide valuable insights in intrusion detection and response.

Our game theoretic methodology can be applied to the cost-benefit analysis of any
security mechanism. The main difficulty is the quantification of the players’ payoffs. Our
future work includes Bayesian game modeling of security systems and learning of repeated

games.
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Chapter 7

Conclusions and Future Directions

7.1 Conclusions

In this dissertation, we examined the fundamental issues involved in anomaly

detection and presented our solutions to some of the issues. Specifically, we:

e presented a new approach to learn program behavior for intrusion detection. Text cat-
egorization techniques were adopted to convert each process to a vector and calculate
the similarity between two program activities. Then the k-Nearest Neighbor classifier
was employed to classify program behavior as normal or intrusive. We demonstrated
that our approach is able to effectively detect intrusive program behavior while a low

false positive rate is achieved.

e designed an adaptive anomaly detection framework that is able to to handle concept
drift and online learning for dynamic, changing environments. Through the use of
unsupervised evolving connectionist systems, normal behavior changes are efficiently
accommodated while anomalous activities can still be recognized. We demonstrated
the performance of our adaptive anomaly detection systems and showed that the false

positive rate can be significantly reduced.

e introduced an efficient error estimate for support vector machine based anomaly de-
tection and proposed to use inverse power-law learning curves to estimate training

size requirements.
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e presented a game theoretic methodology for cost-effectiveness analysis of IDS. A two-
person, nonzero-sum game was used to model the strategic interdependence between
an IDS and an attacker. The solutions based on the game theoretic analysis provide
valuable insights in answering questions such as when an IDS is useful and how the

IDS should respond to an alarm.

7.2 Future Directions

Over the past two decades, machine learning has played a significant role in build-
ing anomaly detection models for detecting previously unknown attacks. Yet the current
state-of-the-art of intrusion detection systems is still primitive and much remains to be
explored. The complexity of intrusion detection problems of today presents new research

challenges in the field of machine learning.

7.2.1 Theoretic Analysis

Like many other fields, intrusion detection has been based on a combination of
intuition and ad hoc techniques. There is a lack of underlying theoretic analysis in this
field.

First of all, anomaly detection assumes that intrusive activities are distinct from
normal activities and deviation from normal behaviors by users or programs are indications
of intrusions. Although the assumption is intuitively appealing, there has been little the-
oretical support. Therefore, there is a need to address the soundness and completeness of
anomaly detection methods. In other words, what types of intrusions can and can not be
detected by anomaly detection? What are the power and limitations of a machine learning
based anomaly detection system? Is it possible to distinguish anomalies related to intru-
sions from those related to other factors? Despite a few previous attempts [37] [98] [105],
these questions remain largely open.

Second, for a particular environment, what features, metrics, machine learning
techniques provide the best performance to model the normal behavior of the environment?

How efficient is the learning system in time, space and data? How to systematically in-
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corporate domain knowledge in anomaly detection? Computational learning theory, the
theoretical underpinning of machine learning, might shed light on these fundamental ques-
tions.

Last, an equally important issue is to develop some theoretical understanding of
intrusive behaviors. Attackers are constantly looking for new way to attack. Is it possible

to get an abstract view of various intrusions or even predict the next wave of attacks?

7.2.2 Learning for Understanding and Planning

Intrusion prevention, detection and response are three general tasks of security
officers. Once an intrusion is detected, proper response should be evoked to recover and
prevent future attacks. The current state-of-art of IDSes, mostly based on classification
techniques, provides little insight on the attacker’s intent (especially in case of sophisticated
attacks). Therefore intrusion response heavily relies on manual forensic analysis. Machine
learning techniques that aim to interpret observations, create situation awareness, and plan

automated response can play a significant role in the progress of the IDS field.

7.2.3 Ensemble Learning

One method of improving the intrusion detection accuracy is to combine the out-
puts of different classifiers, a strategy known as ensemble learning. In practice, there are
many different types of intrusions, and different methods are needed to detect them using
multiple and diverse sensors. Combining the evidence from multiple classifiers can effectively
improve the accuracy and trustworthiness of IDSes. There are various ways of construct-
ing an ensemble of classifiers. For example, one can divide the original training dataset
into subsets and different classifiers are trained with each subset. This strategy works well
when the hypothesis learned is fairly sensitive to small changes in training data. Another
general approach is to manipulate the input features in a similar fashion. Furthermore,
it is possible to build an ensemble of classifiers each using a different learning algorithm.
Learning algorithms using radically different principles probably may produce very different
classifiers. The key is to correlate the outputs of these classifiers (for example, using the

majority voting rule).
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Appendix A

Support Vector Machine Based

Anomaly Detection

Support Vector Machine is a relatively new and state-of-the-art classification method

pioneered by Vapnik [104]. It is based on the so-called structural risk minimization princi-
ple, which minimizes an upper bound on the generalization error. The method performs a
mapping from the input space to a higher-dimensional feature space through the use of a
kernel function. It separates the data in the feature space by means of a maximum margin
hyperplane.

Inspired by SVM, Tax and Duin [99] proposed to use a spherically shaped bound-
ary, which is the smallest hypersphere containing most of the training data points, to de-
scribe the data. The hypersphere, also known as Support Vector Data Description (SVDD),
represents the characterization of the training set and can be used for anomaly detection.
Naturally, the data points that fall outside the hypersphere are regarded as outliers (i.e.,
anomalies).

To begin, let us assume that we are given a training set S = {x;},i = 1,2,...,,N,
where each vector x; represents a data point or an object. The hypersphere enclosing most
of S is characterized by center ¢ and radius R. One could require the hypersphere to contain
all the data points in S instead. However, it would not be a robust approach in the presence

of noise in the training data.
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To allow the possibility of outliers in S, the distance from x; to the center ¢ should
not be strictly smaller than R, but larger distances should be penalized. Therefore we in-
troduce the so-called slack variables &;, where §; is zero for points inside the hypersphere
and measures the degree to which the distance squared from c exceeds R? for points out-
side. Then finding the smallest hypersphere (¢, R) amounts to the following minimization
problem:

1 N
MiNc R ¢ R? + m; &,
with constraints that all data are within a slightly lar_ger hypers here:

”Xi —C||2 < R2 +¢&i, & >0, 1=1,2,..,N.

Here parameter v € (0, 1) controls the trade-off between the volume of the hypersphere and
errors. Its meaning will be clearer later.
If we introduce a Lagrangian and rewrite the original optimization in terms of the
Lagrange multipliers «;, we obtain the dual problem:
N N
Ming Z oo (X; - Xj5) — Zai(xi “X;)
Q=1 i=1
subject to

ul 1
;ai: L 0SS <—, i=1,2,..,N.
1=

The solution of the dual problem gives a set of ;. When an object x; satisfies ||x;—c||? < R?,

the corresponding «; will be zero. For objects satisfying ||x; — ¢||? = R% + &;, a; > 0:
||Xi — CH2 < R2 = a; =0

1
||Xz‘—C||2:fz2 = O<Oéi<m

1
||Xz' —CH2 > R2 = o = m

The center of the optimal hypersphere is simply a linear combination of the objects:

N
Cc = E [e70. R
=1

Only objects x; with a; > 0 are needed to define the hypersphere and these objects are
therefore called support vectors. By definition, R is the distance from the center of the opti-

mal hypersphere ¢ to any of the support vectors on the boundary known as the unbounded



Figure A.1: A two-dimensional sphere (solid line) containing most of the data. Enclosed in
a circle are four support vectors on the boundary.

support vectors. Support vectors that fall outside the hypersphere with «; = 1/vN, the

bounded support vectors, are excluded. Therefore:
R? = (Xk . Xk) — QZ OAZ'(XZ' . Xk) + ZOAZ'OAJ'(XZ' . Xj)
i 3

for any x;, with 0 < a; < 1/vN. To test an object z, its distance to the center of the optimal
hypersphere is calculated and compared with the radius R. It is considered anomalous if
the distance is greater than R. Figure A.1 illustrates the sphere and support vectors for a
two-dimensional data set.

Instead of finding the smallest hypersphere in the original input space, we can
perform a mapping ¢ from the input space to a feature space such that the inner product

in the image of ¢ can be computed by evaluating some simple kernel:

K(x,y) = (¢(x),6(y)),

such as the Gaussian kernel

K(x,y) = e 1yl

Scholkopf et al. [93] took an alternative approach, also known as one-class SVM, to
adapting the SVM paradigm to the anomaly detection problem. A hyperplane is placed such

that it separates the dataset from the origin with maximal margin. Although this is not a
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close boundary around the data, it gives equivalent solutions when the data is preprocessed
to have unit norm or the kernel K(x,y) depends on only x —y so that K (x,x) is constant.
One-class SVM has been used for computer intrusion detection [24].

It can be shown [96] that finding the smallest hypersphere containing most of the
data is a convex optimization problem. This ensures a unique hypersphere solution that
can be found efficiently. Furthermore, v is an upper bound on the fraction of outliers, that
is, training points lying outside the optimal hypersphere. Meanwhile, v is a lower bound
on the fraction of support vectors. In other words, there are at most ¥ N training points
outside the hypersphere, while at least v N of the training points do not lie in the interior

of the hypersphere and they serve as the support vectors.

93



Bibliography

[1]

[2]

[12]

[13]

K. Aas and L. Eikvil Text  categorisation: A survey,
http://citeseer.nj.nec.com/aas99text.html, 1999.

T. Alpcan and T. Basar. A game theoretic approach to decision and analysis in
network intrusion detection. In Proceedings of 42nd IEEE Conference on Decision
and Control, Maui, HI, December 2003.

M. Asaka, T. Onabuta, T. Inoue, S. Okazawa, and S. Goto. A new intrusion detection
method based on discriminant analysis. [EEE TRANS. INF. & SYST., E84-D(5):570—
577, 2001.

J. Ashbourn. Biometrics: Advanced Identity Verification. Springer-Verlag, London,
2000.

S. Axelsson. Research in intrusion-detection systems: A survey. Technical Report
98-17, Department of Computer Engineering, Chalmers University of Technology,
Goteborg, Sweden, December 1998.

S. Axelsson. The base-rate fallacy and the difficulty of intrusion detection. ACM
Trans. Inf. Syst. Secur., 3(3):186-205, 2000.

F. Bergadano, D. Gunetti, and C. Picardi. User authentication through keystroke
dynamics. ACM Trans. Inf. Syst. Secur., 5(4):367-397, 2002.

M. Bishop. Computer Security: Art and Science. Addison-Wesley, 2002.

J. Cannady. Next generation intrusion detection: Autonomous reinforcement learning
of network attacks. In Proceedings of the 23rd National Information Systems Security
Conference, 2000.

G. A. Carpenter and S. Grossberg, editors. Pattern Recognition by Self-Organizing
Neural Networks. MIT Press, Cambridge, MA, 1991.

G. A. Carpenter, S. Grossberg, and D. B. Rosen. Fuzzy art: Fast stable learning and
categorization of analog patterns by an adaptive resonance system. Neural Networks,
4:759-771, 1991.

H. Cavusoglu and S. Raghunathan. Configuration of intrusion detection systems: A
comparison of decision and game theoretic approaches. In Proceedings of International
Conference on Information Systems (ICIS), Seattle, WA, December 2003.

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines,
http://www.csie.ntu.edu.tw/ cjlin/libsvm, 2001.

94



[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

C. Cortes, L. Jackel, S. Solla, V. Vapnik, and S. Denker. Asymptotic values and
rates of convergence. In Advances in Neural Information Processing Systems VI, San
Francisco, CA, 1994. Morgan Kaufmann.

M. Damashek. Gauging similarity with n-grams: Language-independent categoriza-
tion of text. Science, 267:843-848, February 1995.

DARPA Intrusion Detection datasets. http://www.ll.mit.edu/ist/ideval/data/.

H. Debar, M. Becker, and D. Siboni. A neural network component for an intrusion de-
tection system. In Proceedings of the 1992 IEEE Symposium on Security and Privacy,
page 240. IEEE Computer Society, 1992.

D. E. Denning. An intrusion-detection model. IEEE Trans. Softw. Eng., 13(2):222—
232, 1987.

L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer Verlag, New York, 1996.

R. Dietrich, M. Opper, and H. Sompolinsky. Support vectors and statistical mechan-
ics. In A. J. Smola and P. J. Bartlett, editors, Advances in Large Margin Classifiers,
pages 359-368. MIT Press, Cambridge, MA, 2000.

T. Dietterich and P. Langley. Machine learning for cognitive networks:
Technology assessment and research challenges. draft of may 11, 2003,
http://web.engr.oregonstate.edu/ tgd/kp/dl-report.pdf.

The Fifth International Knowledge Discovery and Data Mining Tools Competition
(KDD Cup 1999) Data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,
1999.

E. Eskin. Anomaly detection over noisy data using learned probability distributions.
In Proceedings 17th International Conference on Machine Learning, pages 255-262.
Morgan Kaufmann, San Francisco, CA, 2000.

E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework for
unsupervised anomaly detection: Detecting intrusions in unlabeled data. In D. Bar-
bara and S. Jajodia, editors, Applications of Data Mining in Computer Security.
Kluwer, 2002.

E. Eskin, M. Miller, Z.-D. Zhong, G. Yi, W. Lee, and S. Stolfo. Adaptive model
generation for intrusion detection systems. In Proceedings of the ACMCCS Workshop
on Intrusion Detection and Prevention, Athens, Greece, 2000.

F. Esponda, S. Forrest, and P. Helman. A formal framework for positive and negative
detection. IEEE Transactions on Systems, Man, and Cybernetics, 34(1):357-373,
2004.

W. Fan. Cost-sensitive, scalable and adaptive learning using ensemble-based Methods.
PhD thesis, Columbia University, February 2001.

95



[28]

[33]

[34]

[35]

[36]

[37]

[42]

[43]

T. Fawcett and F. Provost. Activity monitoring: Noticing interesting changes in
behavior. In Chaudhuri and Madigan, editors, Proceedings on the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 53—62, San
Diego, CA, 1999.

S. Forrest, S. A. Hofmeyr, and A. Somayaji. Computer immunology. Communications
of the ACM, 40:88-96, 1997.

S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for unix
processes. In Proceedings of the 1996 IEEE Symposium on Security and Privacy, page
120. IEEE Computer Society, 1996.

D. Fudenberg and J. Tirole. Game Theory. MIT, 1991.

J. Gaffney and J. Ulvila. Evaluation of intrusion detectors: A decision theory ap-
proach. In Proceedings of 2001 IEEE Symposium on Security and Privacy, pages
50-61, Los Alamitos, CA, 2001.

A. K. Ghosh and A. Schwartzbard. A study in using neural networks for anomaly and
misuse detection. In Proceedings of the Eighth USENIX Security Symposium, 1999.

L. A. Gordon and M. P. Loeb. The economics of information security investment.
ACM Trans. Inf. Syst. Secur., 5(4):438-457, 2002.

S. Greenberg. Using unix: Collected traces of 168 users. Technical Report 88/333/45,
Department of Computer Science, University of Calgary, Calgary, Canada, 1998.

Gartner Group. Hype cycle for information security,
http://www.gartner.com/pages/story.php.id.8789.s.8.jsp, 2003.

P. Helman and G. Liepins. Statistical foundations of audit trail analysis for the
detection of computer misuse. IEEE Trans. Software Engineering, 19(9):886-901,
September 1993.

G. Helmer, J. S. K. Wong, V. G. Honavar, and L. Miller. Automated discovery of
concise predictive rules for intrusion detection. J. Syst. Softw., 60(3):165-175, 2002.

M. Hossain and S. M. Bridges. A framework for an adaptive intrusion detection
system with data mining. In Proceedings of the 18th Annual Canadian Information
Technology Security Symposium, Ottawa, Canada, June 2001.

W. Hu, Y. Liao, and V. R. Vemuri. Robust support vector machines for anomaly
detection in computer security. In Proceedings of international Conference of Machine
Learning and Applications, Los Angeles, CA, 2003.

J. Rowe I. Balepin, S. Maltsev and K. Levitt. Using specification-based intrusion
detection for automated response. In Proceedings of 6th International Symposium,
RAID 2003, Recent Advances in Intrusion Detection, Pittsburgh, PA, 2003.

C. Theagwara. The effect of intrusion detection management methods on the return
on investment. Computers & Security, 23(3):213-228, 2004.

J.-S. R. Jang, C.-T. Sun, and E. Mizutani. Neuro-Fuzzy and Soft Computing: A
computational approach to learning and machine intelligence. Prentice Hall, 1997.

96



[44]

[57]

[58]

H. S. Javitz and A. Valdes. The nides statistical component description and justifica-
tion. Technical report, Computer Science Laboratory, SRI International, Menlo Park,
CA, March 1994.

T. Joachims. Estimating the generalization performance of a SVM efficiently. In Pat
Langley, editor, Proceedings of ICML-00, 17th International Conference on Machine
Learning, pages 431-438, San Francisco, CA, 2000. Morgan Kaufmann.

K. Julisch. Clustering intrusion detection alarms to support root cause analysis. ACM
Trans. Inf. Syst. Secur., 6(4):443-471, 2003.

N. Kasabov. Evolving fuzzy neural networks for supervised/unsupervised on-line,
knowledge-based learning. IEEE Trans. on Man, Machine and Cybernetics—Part B:
Cybernetics, 31(6):902-918, December 2001.

N. Kasabov. Evolving Connectionist Systems: Methods and Applications in Bioinfor-
matics, Brain Study and Intelligence Machines. Springer, 2002.

R. A. Kemmerer. NSTAT: A model-based real-time network intrusion detection sys-
tem. Technical Report TRCS97-18, 17 1998.

K. Kendall. A database of computer attacks for the evaluation of intrusion detection
systems, 1998.

J. O. Kephart, G. B. Sorkin, W. C. Arnold, D. M. Chess, G. J. Tesauro, and S. R.
White. Biologically inspired defenses against computer viruses. In Morgan Kaufmann,
editor, Proceedings of IJCAI San Francisco, 1995.

C. Ko, G. Fink, and K. Levitt. Automated detection of vulnerabilities in privileged
programs by execution monitoring. In Proceedings of 10th Annual Computer Security
Applications Conference, pages 134—144, 1994.

V. Koltchingkii and D. Panchenko. Rademacher processes and bounding the risk of
function learning. In Evarist Gine, David M. Mason, and Jon A. Wellner, editors,
High Dimensional Probability 11, pages 443-459, 2000.

C. Kruegel, D. Mutz, W. Robertson, and F. Valeur. Bayesian event classification
for intrusion detection. In Proceedings of Annual Computer Security Applications
Conference, Las Vegas, NV, 2003.

C. Kruegel and T. Toth. Using decision trees to improve signature-based intrusion
detection. In Proceedings of Recent Advances in Intrusion Detection (RAID 2003),
2003.

J. T.-Y. Kwok. Automatic text categorization using support vector machine. In
Proceedings of International Conference on Neural Information Processing, pages 347—
351, 1998.

T. Lane. Machine Learning Techniques for the computer security domain of anomaly
detection. PhD thesis, Purdue University, West Lafayette, IN, 2000.

T. Lane and C. E. Brodley. Approaches to online learning and concept drift for user
identification in computer security. In Knowledge Discovery and Data Mining, pages
259-263, 1998.

97



[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

T. Lane and C. E. Brodley. Temporal sequence learning and data reduction for
anomaly detection. ACM Trans. Inf. Syst. Secur., 2(3):295-331, 1999.

A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava. A comparative study
of anomaly detection schemes in network intrusion detection. In Proceedings of the
3rd SIAM International Conference on Data Mining, pages 2536, San Francisco, CA,
2003.

W. Lee, W. Fan, M. Miller, S. J. Stolfo, and E. Zadok. Toward cost-sensitive modeling
for intrusion detection and response. J. Comput. Secur., 10(1-2):5-22, 2002.

W. Lee, S. Stolfo, and P. Chan. Learning patterns from unix process execution traces
for intrusion detection. In Proceedings of the AAAI9T workshop on AI methods in
Fraud and risk management, pages 50-56, July 1997.

W. Lee and S. J. Stolfo. A framework for constructing features and models for intru-
sion detection systems. ACM Trans. Inf. Syst. Secur., 3(4):227-261, 2000.

W. Lee, S. J. Stolfo, and K. W. Mok. Adaptive intrusion detection: A data mining
approach. Artif. Intell. Rev., 14(6):533-567, 2000.

W. Lee and D. Xiang. Information-theoretic measures for anomaly detection. In Proc.
of the 2001 IEEE Symposium on Security and Privacy, pages 130-143, May 2001.

C. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S. Noble. The spectrum kernel: A
string kernel for svm protein classification. In Proceedings of the Pacific Symposium
on Biocomputing 2002 (PSB 2002), pages 564-575, January 2002.

Y. Liao and V. R. Vemuri. Use of k-nearest neighbor classifier for intrusion detection.
Computers and Security, 21(5):439-448, 2002.

Y. Liao and V. R. Vemuri. Using text categorization techniques for intrusion detec-
tion. In Proceedings of the 11th USENIX Security Symposium, pages 51-59. USENIX
Association, 2002.

R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D. Webber,
S. Webster, D. Wyschograd, R. Cunninghan, and M. Zissan. Evaluating intrusion de-
tection systems: the 1998 darpa off-line intrusion detection evaluation. In Proceedings
of the DARPA Information Survivability Conference and Ezposition, pages 12-26, Los
Alamitos, CA, 2000. IEEE Computer SocietyPress.

R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das. Analysis and results
of the 1999 darpa off-line intrusion detection evaluation. In RAID ’00: Proceedings of
the Third International Workshop on Recent Advances in Intrusion Detection, pages
162-182, London, UK, 2000. Springer-Verlag.

P. Liu and W. Zang. Incentive-based modeling and inference of attacker intent, ob-
jectives, and strategies. In Proceedings of ACM Conference on Computer and Com-
munications Security (CCS’ 03), pages 179-189, 2003.

T. F. Lunt. Detecting intruders in computer systems. In Proceedings of Conference
on Auditing and Computer Technology, 1993.

98



[73]

[74]

[75]

[79]

[80]

A. Lunts and V. Brailovsky. Evaluation of attributes obtained in statistical decision
rules. Engineering Cybernetics, 3:98-109, 1967.

K. Lye and J. Wing. Game strategies in network security. In Proceedings of 15th IEEE
Workshop on Foundations of Computer Security (FCS ’02), Copenhagen, Denmark,
July 2002.

M. V. Mahoney and P. K. Chan. Learning nonstationary models of normal network
traffic for detecting novel attacks. In Proceedings of the eighth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 376-385. ACM
Press, 2002.

M. V. Mahoney and P. K. Chan. An analysis of the 1999 darpa/lincoln laboratory
evaluation data for network anomaly detection. In Proceedings of the 6th Intl. Symp.
Recent Advances in Intrusion Detection (RAID), 2003.

M. Markou and S. Singh. Novelty detection: a review. Singnal Processing, 83:2481—
2521, 2003.

K. Matsuura. Information security and economics in computer networks: An inter-
disciplinary survey and a proposal of integrated optimization of investment. In Pro-
ceedings of the 9th International Conference of Computing in Economics and Finance
(CEF 2003), Seattle, WA, July 2003.

R. A. Maxion. Masquerade detection using enriched command lines. In Proc. Int.
Conf. Dependable Systems and Networks, San Francisco, CA, 2003.

R. A. Maxion and T. N. Townsend. Masquerade detection using truncated command
lines. In Proceedings of International Conference on Dependable Systems & Networks,
pages 219228, Washington DC, June 2002.

J. McHugh. Testing intrusion detection systems: A critique of the 1998 and 1999
darpa intrusion detection system evaluations as performed by lincoln laboratory. ACM
Trans. Information and System Security, 3(4):262—294, 2000.

J. McHugh. Intrusion and intrusion detection. International Journal of Information
Security, 1(1):14-35, 2001.

L. M’e and C. Michel. Intrusion detection: A bibliography. Technical Report SSIR-
2001-01, Sup’elec, Rennes, France, September 2001.

Sun Microsystems. SunShield Basic Security Module Guide. 1995.

S. Mukherjee, P. Tamayo, S. Rogers, R. Rifkin, A. Engle, C. Campbell, T. R. Golub,
and J. P. Mesirov. Estimating dataset size requirements for classifying dna microarray
data. Journal of Computational Biology, 10:119-142, November 2003.

S. Mukkamala, G. Janowski, and A. H. Sung. Intrusion detection using neural net-
works and support vector machines. In Proceedings of Hybrid Information Systems
Advances in Soft Computing, pages 121-138. Springer Verlag, 2001.

University of New Mexico Computer Immune System Data  Sets.
http://www.cs.unm.edu/%7eimmsec/data-sets.htm.

99



[83]

[98]

[99]

[100]

[101]

[102]

M. Oka, Y. Oyama, H. Abe, and K. Kato. Anomaly detection using layered networks
based on eigen co-occurrence matrix. In Proceedings of 7th International Symposium
on Recent Advances in Intrusion Detection (RAID 2004), pages 223-237, Sophia An-
tipolis, French Riviera, France, 2004.

The Third Annual Workshop on Economics and Information Security (WEIS04).
http://www.dtc.umn.edu/weis2004/.

M. Opper and W. Kinzel. Statistical Mechanics of Generalisation in Models of Neural
Networks. Springer Verlag, Heidelberg, 1995.

V. Paxson. Bro: a system for detecting network intruders in real-time. Computer
Networks (Amsterdam, Netherlands: 1999), 31(23-24):2435-2463, 1999.

P. A. Porras and P. G. Neumann. EMERALD: Event monitoring enabling responses
to anomalous live disturbances. In Proc. 20th NIST-NCSC National Information
Systems Security Conference, pages 353-365, 1997.

B. Scholkopf, J. C. Platt, J. Schawe-Taylor, A. J. Smola, and R. C. Williamson.
Estimating the support of a high-dimensional distribution. Neural Computation,
13(7):1443-1471, 2001.

M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr, M. Theus, and Y. Vardi. Com-
puter intrusion: Detecting masquerades. Statistical Science, 16(1):33-38, November
2000.

K. Sequeira and M. J. Zaki. Admit: Anomaly-based data mining for intrusions. In
Proceedings of SIGKDD, pages 386-395, 2002.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

K. M. C. Tan and R. A. Maxion. "why 67" defining the operational limits of stide,
an anomaly-based intrusion detector. In Proceedings of the 2002 IEEE Symposium
on Security and Privacy, page 188. IEEE Computer Society, 2002.

K. MC Tan, K. S. Killourhy, and R. A. Maxion. Undermining an anomaly-based
intrusion detection system using common exploits. In Proceedings of 5th International
Symposium, RAID 2002, Recent Advances in Intrusion Detection, pages 54-73, 2002.

D. M.J. Tax and R. P.W. Duin. Support vector data description. Machine Learning,
54:45-66, 2004.

H. S. Teng, K. Chen, and S. C. Lu. Adaptive real-time anomaly detection using
inductively generated sequential patterns. In Proceedings of IEEE Symposium on
Security and Privacy, pages 278284, Oakland, CA, May 1990.

P. Uppuluri and R. Sekar. Experiences with specification-based intrusion detection. In
Proceedings of Recent Advances in Intrusion Detection (RAID 2001), pages 172-189,
2001.

H.S. Vaccaro and G.E. Liepins. Detection of anomalous computer session activity. In
Proceedings of the 1989 IEEE Symposium on Security and Privacy, pages 280-289.
IEEE Computer Society, 1989.

100



[103]

[104]
[105]

[106]

[107]

[108]

[109]

A. Valdes. Detecting novel scans through pattern anomaly detection. In Proceed-
ings of DARPA Information Survivability Conference and Ezxposition, pages 140-151,
Washington, DC, April 2003.

V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection systems. In
ACM Conference on Computer and Communications Security, pages 255-264, 2002.

C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system
calls: Alternative data models. In Proceedings of IEEE Symposium on Security and
Privacy, pages 133-145, Oakland, CA, May 1999.

K. Yamanishi, J. Takeuchi, and G. Williams. On-line unsupervised outlier detection
using finite mixtures with discounting learning algorithms. In Proceedings of the Sizth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 320-324, Boston, MA, August 2000.

K. Yamanishi, J. Takeuchi, and G. Williams. On-line unsupervised outlier detec-
tion using finite mixtures with discounting learning algorithms. Data Mining and
Knowledge Discovery, 8:275-300, 2004.

Y. Yang. Expert network: Effective and efficient learning from human decisions in text
categorization and retrieval. In Proceedings of 17th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR’94), pages
13-22, 1994.

101



